Loading…

Surface Dynamic Damage Prediction Model of Horizontal Coal Seam Based on the Idea of Wave Lossless Propagation

According to traditional concepts, the movement of overlying strata and surface damage caused by coal mining in horizontal coal seams are symmetrical in terms of spatial distribution. However, in a lot of engineering practices, this symmetry has not been discovered. We often use the symmetry functio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-06, Vol.19 (11), p.6862
Main Authors: Yan, Weitao, Chen, Junjie, Tan, Yi, He, Rong, Yan, Shaoge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:According to traditional concepts, the movement of overlying strata and surface damage caused by coal mining in horizontal coal seams are symmetrical in terms of spatial distribution. However, in a lot of engineering practices, this symmetry has not been discovered. We often use the symmetry function to establish the profile prediction function of the surface damage, which results in a large difference between the prediction result and the actual situation. To solve this problem, this paper takes subsidence velocity as an example. Firstly, the spatial distribution functions of subsidence velocity on both sides were deduced theoretically. Through comparison, it is found that the change rate of the spatial distribution curve of the coal pillar side subsidence velocity is smoother than that of the goaf side and the subsidence velocity curves are skewed to the left. Secondly, based on the idea of lossless propagation of harmonic waves and idealizing the propagation environment, the spatial propagation relationship of surface subsidence velocity in the time domain is established. Then, the Box-Cox transform function is introduced to improve the normal distribution probability density function, and a new dynamic subsidence prediction model based on the Box-Cox transformation is obtained, which is suitable for the full mining stage. The model is tested by practical cases, the prediction accuracy is better than 7%, and the prediction results can meet the needs of engineering prediction accuracy (10%). The results of this research can enrich the existing subsidence prediction theory and provide theoretical and technical support for the prediction of dynamic surface damage caused by similar mining.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph19116862