Loading…

Simultaneous Quantification of Anisotropic Microcirculation and Microstructure in Peripheral Nerve

Peripheral nerve injury is a significant public health challenge, and perfusion in the nerve is a potential biomarker for assessing the injury severity and prognostic outlook. Here, we applied a novel formalism that combined intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) to s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical medicine 2022-05, Vol.11 (11), p.3036
Main Authors: Merchant, Samer, Yeoh, Stewart, Mahan, Mark A, Hsu, Edward W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peripheral nerve injury is a significant public health challenge, and perfusion in the nerve is a potential biomarker for assessing the injury severity and prognostic outlook. Here, we applied a novel formalism that combined intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) to simultaneously characterize anisotropic microcirculation and microstructure in the rat sciatic nerve. Comparison to postmortem measurements revealed that the in vivo IVIM-DTI signal contained a fast compartment (2.32 ± 0.04 × 10−3 mm2/s mean diffusivity, mean ± sem, n = 6, paired t test p < 0.01) that could be attributed to microcirculation in addition to a slower compartment that had similar mean diffusivity as the postmortem nerve (1.04 ± 0.01 vs. 0.96 ± 0.05 × 10−3 mm2/s, p > 0.05). Although further investigation and technical improvement are warranted, this preliminary study demonstrates both the feasibility and potential for applying the IVIM-DTI methodology to peripheral nerves for quantifying perfusion in the presence of anisotropic tissue microstructure.
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm11113036