Loading…
Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order
The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field mo...
Saved in:
Published in: | Journal of physical chemistry. C 2019-08, Vol.123 (33), p.20393-20404 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043 |
---|---|
cites | cdi_FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043 |
container_end_page | 20404 |
container_issue | 33 |
container_start_page | 20393 |
container_title | Journal of physical chemistry. C |
container_volume | 123 |
creator | Marchioro, Arianna Bischoff, Marie Lütgebaucks, Cornelis Biriukov, Denys Předota, Milan Roke, Sylvie |
description | The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field models for the structure of the interface, which give only theoretical estimates of surface potential values and do not provide properties related to the local microscopic structure, such as the orientation of interfacial water molecules. Here we apply polarimetric angle-resolved second harmonic scattering (AR-SHS) to 300 nm diameter SiO2 colloidal suspensions to experimentally determine both surface potential and interfacial water orientation as a function of pH and NaCl concentration. The surface potential values and interfacial water orientation change significantly over the studied pH and salt concentration range, whereas zeta-potential (ζ) values remain constant. By comparing the surface and ζ-potentials, we find a layer of hydrated condensed ions present in the high pH case, and for NaCl concentrations ≥1 mM. For milder pH ranges (pH < 11), as well as for salt concentrations |
doi_str_mv | 10.1021/acs.jpcc.9b05482 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9182216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675987029</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043</originalsourceid><addsrcrecordid>eNp1kUFvEzEQhS0EoqVw54R85ECC1157vRyQUERppYqCAuJozc7ajauNndq7SOkf4e_ikDSCAyePPe99M_Ij5GXF5hXj1VvAPL_dIM7bjsla80fktGoFnzW1lI-Pdd2ckGc53zImBavEU3IipGq5lPqU_FpOyQFaulhBAhxt8vcw-hhodHQRhyH6Hga69INHoJ8hxA2k0eNgM-22dGkxhp5eQFrH4JEuEcYdI9y8o18nCKN323Kh48rSh0lf4mhLo1ChWC9D0Zf33f0HlJpep96m5-SJgyHbF4fzjHw___htcTG7uv50ufhwNYNaiHGmmOoQUTilGaJynW4aC5JzjlL2VgG32IPUUiqtHIjadR2vOa8ddrpjtTgj7_fczdStbY9lswSD2SS_hrQ1Ebz5txP8ytzEn6atNOeVKoDXB0CKd5PNo1n7jHYYINg4ZcNVI1vdMN4WKdtLMcWck3XHMRUzuzxNydPs8jSHPIvl1d_rHQ0PARbBm73gjzVOKZTf-j_vN5GcsW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675987029</pqid></control><display><type>article</type><title>Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Marchioro, Arianna ; Bischoff, Marie ; Lütgebaucks, Cornelis ; Biriukov, Denys ; Předota, Milan ; Roke, Sylvie</creator><creatorcontrib>Marchioro, Arianna ; Bischoff, Marie ; Lütgebaucks, Cornelis ; Biriukov, Denys ; Předota, Milan ; Roke, Sylvie</creatorcontrib><description>The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field models for the structure of the interface, which give only theoretical estimates of surface potential values and do not provide properties related to the local microscopic structure, such as the orientation of interfacial water molecules. Here we apply polarimetric angle-resolved second harmonic scattering (AR-SHS) to 300 nm diameter SiO2 colloidal suspensions to experimentally determine both surface potential and interfacial water orientation as a function of pH and NaCl concentration. The surface potential values and interfacial water orientation change significantly over the studied pH and salt concentration range, whereas zeta-potential (ζ) values remain constant. By comparing the surface and ζ-potentials, we find a layer of hydrated condensed ions present in the high pH case, and for NaCl concentrations ≥1 mM. For milder pH ranges (pH < 11), as well as for salt concentrations <1 mM, no charge condensation layer is observed. These findings are used to compute the surface charge densities using the Gouy–Chapman and Gouy–Chapman–Stern models. Furthermore, by using the AR-SHS data, we are able to determine the preferred water orientation in the layer directly in contact with the silica interface. Molecular dynamics simulations confirm the experimental trends and allow deciphering of the contributions of water layers to the total response.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b05482</identifier><identifier>PMID: 35692558</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-08, Vol.123 (33), p.20393-20404</ispartof><rights>2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043</citedby><cites>FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043</cites><orcidid>0000-0003-3902-0992 ; 0000-0002-6062-7871 ; 0000-0002-5838-8517 ; 0000-0003-1007-2203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35692558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchioro, Arianna</creatorcontrib><creatorcontrib>Bischoff, Marie</creatorcontrib><creatorcontrib>Lütgebaucks, Cornelis</creatorcontrib><creatorcontrib>Biriukov, Denys</creatorcontrib><creatorcontrib>Předota, Milan</creatorcontrib><creatorcontrib>Roke, Sylvie</creatorcontrib><title>Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field models for the structure of the interface, which give only theoretical estimates of surface potential values and do not provide properties related to the local microscopic structure, such as the orientation of interfacial water molecules. Here we apply polarimetric angle-resolved second harmonic scattering (AR-SHS) to 300 nm diameter SiO2 colloidal suspensions to experimentally determine both surface potential and interfacial water orientation as a function of pH and NaCl concentration. The surface potential values and interfacial water orientation change significantly over the studied pH and salt concentration range, whereas zeta-potential (ζ) values remain constant. By comparing the surface and ζ-potentials, we find a layer of hydrated condensed ions present in the high pH case, and for NaCl concentrations ≥1 mM. For milder pH ranges (pH < 11), as well as for salt concentrations <1 mM, no charge condensation layer is observed. These findings are used to compute the surface charge densities using the Gouy–Chapman and Gouy–Chapman–Stern models. Furthermore, by using the AR-SHS data, we are able to determine the preferred water orientation in the layer directly in contact with the silica interface. Molecular dynamics simulations confirm the experimental trends and allow deciphering of the contributions of water layers to the total response.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFvEzEQhS0EoqVw54R85ECC1157vRyQUERppYqCAuJozc7ajauNndq7SOkf4e_ikDSCAyePPe99M_Ij5GXF5hXj1VvAPL_dIM7bjsla80fktGoFnzW1lI-Pdd2ckGc53zImBavEU3IipGq5lPqU_FpOyQFaulhBAhxt8vcw-hhodHQRhyH6Hga69INHoJ8hxA2k0eNgM-22dGkxhp5eQFrH4JEuEcYdI9y8o18nCKN323Kh48rSh0lf4mhLo1ChWC9D0Zf33f0HlJpep96m5-SJgyHbF4fzjHw___htcTG7uv50ufhwNYNaiHGmmOoQUTilGaJynW4aC5JzjlL2VgG32IPUUiqtHIjadR2vOa8ddrpjtTgj7_fczdStbY9lswSD2SS_hrQ1Ebz5txP8ytzEn6atNOeVKoDXB0CKd5PNo1n7jHYYINg4ZcNVI1vdMN4WKdtLMcWck3XHMRUzuzxNydPs8jSHPIvl1d_rHQ0PARbBm73gjzVOKZTf-j_vN5GcsW4</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Marchioro, Arianna</creator><creator>Bischoff, Marie</creator><creator>Lütgebaucks, Cornelis</creator><creator>Biriukov, Denys</creator><creator>Předota, Milan</creator><creator>Roke, Sylvie</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3902-0992</orcidid><orcidid>https://orcid.org/0000-0002-6062-7871</orcidid><orcidid>https://orcid.org/0000-0002-5838-8517</orcidid><orcidid>https://orcid.org/0000-0003-1007-2203</orcidid></search><sort><creationdate>20190822</creationdate><title>Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order</title><author>Marchioro, Arianna ; Bischoff, Marie ; Lütgebaucks, Cornelis ; Biriukov, Denys ; Předota, Milan ; Roke, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchioro, Arianna</creatorcontrib><creatorcontrib>Bischoff, Marie</creatorcontrib><creatorcontrib>Lütgebaucks, Cornelis</creatorcontrib><creatorcontrib>Biriukov, Denys</creatorcontrib><creatorcontrib>Předota, Milan</creatorcontrib><creatorcontrib>Roke, Sylvie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchioro, Arianna</au><au>Bischoff, Marie</au><au>Lütgebaucks, Cornelis</au><au>Biriukov, Denys</au><au>Předota, Milan</au><au>Roke, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-08-22</date><risdate>2019</risdate><volume>123</volume><issue>33</issue><spage>20393</spage><epage>20404</epage><pages>20393-20404</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The microscopic description of the interface of colloidal particles in solution is essential to understand and predict the stability of these systems, as well as their chemical and electrochemical reactivity. However, this description often relies on the use of simplified electrostatic mean field models for the structure of the interface, which give only theoretical estimates of surface potential values and do not provide properties related to the local microscopic structure, such as the orientation of interfacial water molecules. Here we apply polarimetric angle-resolved second harmonic scattering (AR-SHS) to 300 nm diameter SiO2 colloidal suspensions to experimentally determine both surface potential and interfacial water orientation as a function of pH and NaCl concentration. The surface potential values and interfacial water orientation change significantly over the studied pH and salt concentration range, whereas zeta-potential (ζ) values remain constant. By comparing the surface and ζ-potentials, we find a layer of hydrated condensed ions present in the high pH case, and for NaCl concentrations ≥1 mM. For milder pH ranges (pH < 11), as well as for salt concentrations <1 mM, no charge condensation layer is observed. These findings are used to compute the surface charge densities using the Gouy–Chapman and Gouy–Chapman–Stern models. Furthermore, by using the AR-SHS data, we are able to determine the preferred water orientation in the layer directly in contact with the silica interface. Molecular dynamics simulations confirm the experimental trends and allow deciphering of the contributions of water layers to the total response.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35692558</pmid><doi>10.1021/acs.jpcc.9b05482</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3902-0992</orcidid><orcidid>https://orcid.org/0000-0002-6062-7871</orcidid><orcidid>https://orcid.org/0000-0002-5838-8517</orcidid><orcidid>https://orcid.org/0000-0003-1007-2203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2019-08, Vol.123 (33), p.20393-20404 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9182216 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Characterization%20of%20Colloidal%20Silica%20Nanoparticles%20by%20Second%20Harmonic%20Scattering:%20Quantifying%20the%20Surface%20Potential%20and%20Interfacial%20Water%20Order&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Marchioro,%20Arianna&rft.date=2019-08-22&rft.volume=123&rft.issue=33&rft.spage=20393&rft.epage=20404&rft.pages=20393-20404&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b05482&rft_dat=%3Cproquest_pubme%3E2675987029%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a433t-606bccc3f680cc6fb877ea5222c55de6a2ecda5855686fa34fbb24224fcb8b043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675987029&rft_id=info:pmid/35692558&rfr_iscdi=true |