Loading…
SIRT1 plays an important role in implantation and decidualization during mouse early pregnancy
Sirtuin 1 (SIRT1) is a member of the sirtuin family that functions to deacetylate both histones and non-histone proteins. Previous studies have identified significant SIRT1 upregulation in eutopic endometrium from infertile women with endometriosis. However, SIRT1 function in the uterus has not been...
Saved in:
Published in: | Biology of reproduction 2022-06, Vol.106 (6), p.1072-1082 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sirtuin 1 (SIRT1) is a member of the sirtuin family that functions to deacetylate both histones and non-histone proteins. Previous studies have identified significant SIRT1 upregulation in eutopic endometrium from infertile women with endometriosis. However, SIRT1 function in the uterus has not been directly studied. Using immunochemistry analysis, we found SIRT1 to be most strongly expressed at GD4.5 and GD5.5 in decidualized cells and at GD7.5 in secondary decidual cells in mouse. To assess the role of SIRT1 in uterine function, we generated uterine Sirt1 conditional knockout mice (Pgrcre/+Sirt1f/f; Sirt1d/d). A 6-month fertility trial revealed that Sirt1d/d females were subfertile. Implantation site numbers were significantly decreased in Sirt1d/d mice compared with controls at GD5.5. Sirt1d/d implantation sites at GD4.5 could be divided into two groups, Group #1 with luminal closure and nonspecific COX2 expression compared with controls (14/20) and Group #2 with an open lumen and no COX2 (6/20). In Sirt1d/d Group #1, nuclear FOXO1 expression in luminal epithelial cells was significantly decreased. In Sirt1d/d Group #2, nuclear FOXO1 expression was almost completely absent, and there was strong PGR expression in epithelial cells. At GD5.5, stromal PGR and COX2 were significantly decreased in Sirt1d/d uterine in the areas surrounding the embryo compared with controls, indicating defective decidualization. An artificially induced decidualization test revealed that Sirt1d/d females showed defects in decidualization response. All together, these data suggest that SIRT1 is important for decidualization and contributes to preparing a receptive endometrium for successful implantation. |
---|---|
ISSN: | 0006-3363 1529-7268 |
DOI: | 10.1093/biolre/ioac026 |