Loading…

Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains

Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitr...

Full description

Saved in:
Bibliographic Details
Published in:Drug development research 2020-02, Vol.81 (1), p.43-51
Main Authors: Fields, Francisco R., Freed, Stefan D., Carothers, Katelyn E., Hamid, Md Nafiz, Hammers, Daniel E., Ross, Jessica N., Kalwajtys, Veronica R., Gonzalez, Alejandro J., Hildreth, Andrew D., Friedberg, Iddo, Lee, Shaun W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443
cites cdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443
container_end_page 51
container_issue 1
container_start_page 43
container_title Drug development research
container_volume 81
creator Fields, Francisco R.
Freed, Stefan D.
Carothers, Katelyn E.
Hamid, Md Nafiz
Hammers, Daniel E.
Ross, Jessica N.
Kalwajtys, Veronica R.
Gonzalez, Alejandro J.
Hildreth, Andrew D.
Friedberg, Iddo
Lee, Shaun W.
description Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.
doi_str_mv 10.1002/ddr.21601
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352559882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EokvhwBdAljhxSGs7Tta-IKEWClIFEoKzNf6T7lSJHeyk1X57XLat4MBppJnfvHmaR8hrzk44Y-LU-3wieM_4E7LhTKtGCK2fkg0TW9HIVvMj8qKUa8Y4l0o9J0dtrW3H-w1Zv6abMFKIC07ocrIII53DvKAP1GNxdZz3dC0Yr-gEbocx0DFAjncNiJ5aTPNuX9DVxRLG4BZMkaaBThhxqk0LbgkZk8NIfZoAY3lJng0wlvDqvh6Tn58-_jj73Fx-u_hy9uGycdUfbxRnzm5F4Fr2UkrdBemcsizowemhswCiA-6ha1VvwW61F2AV9MpZOdSF9pi8P-jOq52CdyEuGUYz52os700CNP9OIu7MVboxWjDRy74KvL0XyOnXGspirtOaY_VsRNuJrtNKiUq9O1D1gaXkMDxe4MzcJWRqQuZPQpV987elR_IhkgqcHoBbHMP-_0rm_Pz7QfI3496edQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352559882</pqid></control><display><type>article</type><title>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</title><source>Wiley</source><creator>Fields, Francisco R. ; Freed, Stefan D. ; Carothers, Katelyn E. ; Hamid, Md Nafiz ; Hammers, Daniel E. ; Ross, Jessica N. ; Kalwajtys, Veronica R. ; Gonzalez, Alejandro J. ; Hildreth, Andrew D. ; Friedberg, Iddo ; Lee, Shaun W.</creator><creatorcontrib>Fields, Francisco R. ; Freed, Stefan D. ; Carothers, Katelyn E. ; Hamid, Md Nafiz ; Hammers, Daniel E. ; Ross, Jessica N. ; Kalwajtys, Veronica R. ; Gonzalez, Alejandro J. ; Hildreth, Andrew D. ; Friedberg, Iddo ; Lee, Shaun W.</creatorcontrib><description>Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.</description><identifier>ISSN: 0272-4391</identifier><identifier>EISSN: 1098-2299</identifier><identifier>DOI: 10.1002/ddr.21601</identifier><identifier>PMID: 31483516</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Amino acids ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Antimicrobial peptides ; Bacteriocins ; Conformation ; Cytotoxicity ; E coli ; Helicity ; Hydrophobicity ; Learning algorithms ; Machine learning ; Natural products ; Peptides ; Pseudomonas aeruginosa ; Synthesis ; Toxicity</subject><ispartof>Drug development research, 2020-02, Vol.81 (1), p.43-51</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</citedby><cites>FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</cites><orcidid>0000-0002-1789-8000 ; 0000-0002-9029-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31483516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fields, Francisco R.</creatorcontrib><creatorcontrib>Freed, Stefan D.</creatorcontrib><creatorcontrib>Carothers, Katelyn E.</creatorcontrib><creatorcontrib>Hamid, Md Nafiz</creatorcontrib><creatorcontrib>Hammers, Daniel E.</creatorcontrib><creatorcontrib>Ross, Jessica N.</creatorcontrib><creatorcontrib>Kalwajtys, Veronica R.</creatorcontrib><creatorcontrib>Gonzalez, Alejandro J.</creatorcontrib><creatorcontrib>Hildreth, Andrew D.</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><creatorcontrib>Lee, Shaun W.</creatorcontrib><title>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</title><title>Drug development research</title><addtitle>Drug Dev Res</addtitle><description>Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.</description><subject>Amino acids</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial peptides</subject><subject>Bacteriocins</subject><subject>Conformation</subject><subject>Cytotoxicity</subject><subject>E coli</subject><subject>Helicity</subject><subject>Hydrophobicity</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Natural products</subject><subject>Peptides</subject><subject>Pseudomonas aeruginosa</subject><subject>Synthesis</subject><subject>Toxicity</subject><issn>0272-4391</issn><issn>1098-2299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxS0EokvhwBdAljhxSGs7Tta-IKEWClIFEoKzNf6T7lSJHeyk1X57XLat4MBppJnfvHmaR8hrzk44Y-LU-3wieM_4E7LhTKtGCK2fkg0TW9HIVvMj8qKUa8Y4l0o9J0dtrW3H-w1Zv6abMFKIC07ocrIII53DvKAP1GNxdZz3dC0Yr-gEbocx0DFAjncNiJ5aTPNuX9DVxRLG4BZMkaaBThhxqk0LbgkZk8NIfZoAY3lJng0wlvDqvh6Tn58-_jj73Fx-u_hy9uGycdUfbxRnzm5F4Fr2UkrdBemcsizowemhswCiA-6ha1VvwW61F2AV9MpZOdSF9pi8P-jOq52CdyEuGUYz52os700CNP9OIu7MVboxWjDRy74KvL0XyOnXGspirtOaY_VsRNuJrtNKiUq9O1D1gaXkMDxe4MzcJWRqQuZPQpV987elR_IhkgqcHoBbHMP-_0rm_Pz7QfI3496edQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Fields, Francisco R.</creator><creator>Freed, Stefan D.</creator><creator>Carothers, Katelyn E.</creator><creator>Hamid, Md Nafiz</creator><creator>Hammers, Daniel E.</creator><creator>Ross, Jessica N.</creator><creator>Kalwajtys, Veronica R.</creator><creator>Gonzalez, Alejandro J.</creator><creator>Hildreth, Andrew D.</creator><creator>Friedberg, Iddo</creator><creator>Lee, Shaun W.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1789-8000</orcidid><orcidid>https://orcid.org/0000-0002-9029-5150</orcidid></search><sort><creationdate>202002</creationdate><title>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</title><author>Fields, Francisco R. ; Freed, Stefan D. ; Carothers, Katelyn E. ; Hamid, Md Nafiz ; Hammers, Daniel E. ; Ross, Jessica N. ; Kalwajtys, Veronica R. ; Gonzalez, Alejandro J. ; Hildreth, Andrew D. ; Friedberg, Iddo ; Lee, Shaun W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial peptides</topic><topic>Bacteriocins</topic><topic>Conformation</topic><topic>Cytotoxicity</topic><topic>E coli</topic><topic>Helicity</topic><topic>Hydrophobicity</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Natural products</topic><topic>Peptides</topic><topic>Pseudomonas aeruginosa</topic><topic>Synthesis</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fields, Francisco R.</creatorcontrib><creatorcontrib>Freed, Stefan D.</creatorcontrib><creatorcontrib>Carothers, Katelyn E.</creatorcontrib><creatorcontrib>Hamid, Md Nafiz</creatorcontrib><creatorcontrib>Hammers, Daniel E.</creatorcontrib><creatorcontrib>Ross, Jessica N.</creatorcontrib><creatorcontrib>Kalwajtys, Veronica R.</creatorcontrib><creatorcontrib>Gonzalez, Alejandro J.</creatorcontrib><creatorcontrib>Hildreth, Andrew D.</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><creatorcontrib>Lee, Shaun W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug development research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fields, Francisco R.</au><au>Freed, Stefan D.</au><au>Carothers, Katelyn E.</au><au>Hamid, Md Nafiz</au><au>Hammers, Daniel E.</au><au>Ross, Jessica N.</au><au>Kalwajtys, Veronica R.</au><au>Gonzalez, Alejandro J.</au><au>Hildreth, Andrew D.</au><au>Friedberg, Iddo</au><au>Lee, Shaun W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</atitle><jtitle>Drug development research</jtitle><addtitle>Drug Dev Res</addtitle><date>2020-02</date><risdate>2020</risdate><volume>81</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>0272-4391</issn><eissn>1098-2299</eissn><abstract>Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31483516</pmid><doi>10.1002/ddr.21601</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1789-8000</orcidid><orcidid>https://orcid.org/0000-0002-9029-5150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4391
ispartof Drug development research, 2020-02, Vol.81 (1), p.43-51
issn 0272-4391
1098-2299
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202646
source Wiley
subjects Amino acids
Antibiotics
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
Antimicrobial peptides
Bacteriocins
Conformation
Cytotoxicity
E coli
Helicity
Hydrophobicity
Learning algorithms
Machine learning
Natural products
Peptides
Pseudomonas aeruginosa
Synthesis
Toxicity
title Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20antimicrobial%20peptide%20discovery%20using%20machine%20learning%20and%20biophysical%20selection%20of%20minimal%20bacteriocin%20domains&rft.jtitle=Drug%20development%20research&rft.au=Fields,%20Francisco%20R.&rft.date=2020-02&rft.volume=81&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=0272-4391&rft.eissn=1098-2299&rft_id=info:doi/10.1002/ddr.21601&rft_dat=%3Cproquest_pubme%3E2352559882%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352559882&rft_id=info:pmid/31483516&rfr_iscdi=true