Loading…
Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains
Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitr...
Saved in:
Published in: | Drug development research 2020-02, Vol.81 (1), p.43-51 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443 |
---|---|
cites | cdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443 |
container_end_page | 51 |
container_issue | 1 |
container_start_page | 43 |
container_title | Drug development research |
container_volume | 81 |
creator | Fields, Francisco R. Freed, Stefan D. Carothers, Katelyn E. Hamid, Md Nafiz Hammers, Daniel E. Ross, Jessica N. Kalwajtys, Veronica R. Gonzalez, Alejandro J. Hildreth, Andrew D. Friedberg, Iddo Lee, Shaun W. |
description | Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use. |
doi_str_mv | 10.1002/ddr.21601 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352559882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EokvhwBdAljhxSGs7Tta-IKEWClIFEoKzNf6T7lSJHeyk1X57XLat4MBppJnfvHmaR8hrzk44Y-LU-3wieM_4E7LhTKtGCK2fkg0TW9HIVvMj8qKUa8Y4l0o9J0dtrW3H-w1Zv6abMFKIC07ocrIII53DvKAP1GNxdZz3dC0Yr-gEbocx0DFAjncNiJ5aTPNuX9DVxRLG4BZMkaaBThhxqk0LbgkZk8NIfZoAY3lJng0wlvDqvh6Tn58-_jj73Fx-u_hy9uGycdUfbxRnzm5F4Fr2UkrdBemcsizowemhswCiA-6ha1VvwW61F2AV9MpZOdSF9pi8P-jOq52CdyEuGUYz52os700CNP9OIu7MVboxWjDRy74KvL0XyOnXGspirtOaY_VsRNuJrtNKiUq9O1D1gaXkMDxe4MzcJWRqQuZPQpV987elR_IhkgqcHoBbHMP-_0rm_Pz7QfI3496edQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352559882</pqid></control><display><type>article</type><title>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</title><source>Wiley</source><creator>Fields, Francisco R. ; Freed, Stefan D. ; Carothers, Katelyn E. ; Hamid, Md Nafiz ; Hammers, Daniel E. ; Ross, Jessica N. ; Kalwajtys, Veronica R. ; Gonzalez, Alejandro J. ; Hildreth, Andrew D. ; Friedberg, Iddo ; Lee, Shaun W.</creator><creatorcontrib>Fields, Francisco R. ; Freed, Stefan D. ; Carothers, Katelyn E. ; Hamid, Md Nafiz ; Hammers, Daniel E. ; Ross, Jessica N. ; Kalwajtys, Veronica R. ; Gonzalez, Alejandro J. ; Hildreth, Andrew D. ; Friedberg, Iddo ; Lee, Shaun W.</creatorcontrib><description>Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.</description><identifier>ISSN: 0272-4391</identifier><identifier>EISSN: 1098-2299</identifier><identifier>DOI: 10.1002/ddr.21601</identifier><identifier>PMID: 31483516</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Amino acids ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; Antimicrobial peptides ; Bacteriocins ; Conformation ; Cytotoxicity ; E coli ; Helicity ; Hydrophobicity ; Learning algorithms ; Machine learning ; Natural products ; Peptides ; Pseudomonas aeruginosa ; Synthesis ; Toxicity</subject><ispartof>Drug development research, 2020-02, Vol.81 (1), p.43-51</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</citedby><cites>FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</cites><orcidid>0000-0002-1789-8000 ; 0000-0002-9029-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31483516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fields, Francisco R.</creatorcontrib><creatorcontrib>Freed, Stefan D.</creatorcontrib><creatorcontrib>Carothers, Katelyn E.</creatorcontrib><creatorcontrib>Hamid, Md Nafiz</creatorcontrib><creatorcontrib>Hammers, Daniel E.</creatorcontrib><creatorcontrib>Ross, Jessica N.</creatorcontrib><creatorcontrib>Kalwajtys, Veronica R.</creatorcontrib><creatorcontrib>Gonzalez, Alejandro J.</creatorcontrib><creatorcontrib>Hildreth, Andrew D.</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><creatorcontrib>Lee, Shaun W.</creatorcontrib><title>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</title><title>Drug development research</title><addtitle>Drug Dev Res</addtitle><description>Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.</description><subject>Amino acids</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial peptides</subject><subject>Bacteriocins</subject><subject>Conformation</subject><subject>Cytotoxicity</subject><subject>E coli</subject><subject>Helicity</subject><subject>Hydrophobicity</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Natural products</subject><subject>Peptides</subject><subject>Pseudomonas aeruginosa</subject><subject>Synthesis</subject><subject>Toxicity</subject><issn>0272-4391</issn><issn>1098-2299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxS0EokvhwBdAljhxSGs7Tta-IKEWClIFEoKzNf6T7lSJHeyk1X57XLat4MBppJnfvHmaR8hrzk44Y-LU-3wieM_4E7LhTKtGCK2fkg0TW9HIVvMj8qKUa8Y4l0o9J0dtrW3H-w1Zv6abMFKIC07ocrIII53DvKAP1GNxdZz3dC0Yr-gEbocx0DFAjncNiJ5aTPNuX9DVxRLG4BZMkaaBThhxqk0LbgkZk8NIfZoAY3lJng0wlvDqvh6Tn58-_jj73Fx-u_hy9uGycdUfbxRnzm5F4Fr2UkrdBemcsizowemhswCiA-6ha1VvwW61F2AV9MpZOdSF9pi8P-jOq52CdyEuGUYz52os700CNP9OIu7MVboxWjDRy74KvL0XyOnXGspirtOaY_VsRNuJrtNKiUq9O1D1gaXkMDxe4MzcJWRqQuZPQpV987elR_IhkgqcHoBbHMP-_0rm_Pz7QfI3496edQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Fields, Francisco R.</creator><creator>Freed, Stefan D.</creator><creator>Carothers, Katelyn E.</creator><creator>Hamid, Md Nafiz</creator><creator>Hammers, Daniel E.</creator><creator>Ross, Jessica N.</creator><creator>Kalwajtys, Veronica R.</creator><creator>Gonzalez, Alejandro J.</creator><creator>Hildreth, Andrew D.</creator><creator>Friedberg, Iddo</creator><creator>Lee, Shaun W.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1789-8000</orcidid><orcidid>https://orcid.org/0000-0002-9029-5150</orcidid></search><sort><creationdate>202002</creationdate><title>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</title><author>Fields, Francisco R. ; Freed, Stefan D. ; Carothers, Katelyn E. ; Hamid, Md Nafiz ; Hammers, Daniel E. ; Ross, Jessica N. ; Kalwajtys, Veronica R. ; Gonzalez, Alejandro J. ; Hildreth, Andrew D. ; Friedberg, Iddo ; Lee, Shaun W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial peptides</topic><topic>Bacteriocins</topic><topic>Conformation</topic><topic>Cytotoxicity</topic><topic>E coli</topic><topic>Helicity</topic><topic>Hydrophobicity</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Natural products</topic><topic>Peptides</topic><topic>Pseudomonas aeruginosa</topic><topic>Synthesis</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fields, Francisco R.</creatorcontrib><creatorcontrib>Freed, Stefan D.</creatorcontrib><creatorcontrib>Carothers, Katelyn E.</creatorcontrib><creatorcontrib>Hamid, Md Nafiz</creatorcontrib><creatorcontrib>Hammers, Daniel E.</creatorcontrib><creatorcontrib>Ross, Jessica N.</creatorcontrib><creatorcontrib>Kalwajtys, Veronica R.</creatorcontrib><creatorcontrib>Gonzalez, Alejandro J.</creatorcontrib><creatorcontrib>Hildreth, Andrew D.</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><creatorcontrib>Lee, Shaun W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug development research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fields, Francisco R.</au><au>Freed, Stefan D.</au><au>Carothers, Katelyn E.</au><au>Hamid, Md Nafiz</au><au>Hammers, Daniel E.</au><au>Ross, Jessica N.</au><au>Kalwajtys, Veronica R.</au><au>Gonzalez, Alejandro J.</au><au>Hildreth, Andrew D.</au><au>Friedberg, Iddo</au><au>Lee, Shaun W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains</atitle><jtitle>Drug development research</jtitle><addtitle>Drug Dev Res</addtitle><date>2020-02</date><risdate>2020</risdate><volume>81</volume><issue>1</issue><spage>43</spage><epage>51</epage><pages>43-51</pages><issn>0272-4391</issn><eissn>1098-2299</eissn><abstract>Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31483516</pmid><doi>10.1002/ddr.21601</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1789-8000</orcidid><orcidid>https://orcid.org/0000-0002-9029-5150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4391 |
ispartof | Drug development research, 2020-02, Vol.81 (1), p.43-51 |
issn | 0272-4391 1098-2299 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202646 |
source | Wiley |
subjects | Amino acids Antibiotics Antiinfectives and antibacterials Antimicrobial activity Antimicrobial agents Antimicrobial peptides Bacteriocins Conformation Cytotoxicity E coli Helicity Hydrophobicity Learning algorithms Machine learning Natural products Peptides Pseudomonas aeruginosa Synthesis Toxicity |
title | Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20antimicrobial%20peptide%20discovery%20using%20machine%20learning%20and%20biophysical%20selection%20of%20minimal%20bacteriocin%20domains&rft.jtitle=Drug%20development%20research&rft.au=Fields,%20Francisco%20R.&rft.date=2020-02&rft.volume=81&rft.issue=1&rft.spage=43&rft.epage=51&rft.pages=43-51&rft.issn=0272-4391&rft.eissn=1098-2299&rft_id=info:doi/10.1002/ddr.21601&rft_dat=%3Cproquest_pubme%3E2352559882%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4831-810cb72e194644495e4cc8b0e9fc9f5baa25a1da5386bab79d2ab8a68cb4f4443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352559882&rft_id=info:pmid/31483516&rfr_iscdi=true |