Loading…
What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?
Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechan...
Saved in:
Published in: | Chemistry : a European journal 2021-08, Vol.27 (46), p.11827-11836 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93 |
container_end_page | 11836 |
container_issue | 46 |
container_start_page | 11827 |
container_title | Chemistry : a European journal |
container_volume | 27 |
creator | Ramanan, Rajeev Waheed, Sodiq O. Schofield, Christopher J. Christov, Christo Z. |
description | Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.
The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation. |
doi_str_mv | 10.1002/chem.202101174 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9212892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528175546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</originalsourceid><addsrcrecordid>eNqFkc1u1DAURiMEokNhyxJZYsNmBtuJnXgDKsOUGakDGxBLy3GuG1eOU2KHNqx4AsQz8iR4OmX42bCy9N3jo3v1ZdljghcEY_pct9AtKKYEE1IWd7IZYZTM85Kzu9kMi6Kcc5aLo-xBCBcYY8Hz_H52lOeiEkXOZtm3j62KaBNQbAEtVVRuilajLehWeRs61Bu08l-mTu3itQ2x94De_vj6fQuxnRw6Gc6ttyl7Dd1NksDeI-WbpPNoE9ErQBtv3AheQ4PqKc3Q6jrC4JVDKwc6Dkl9asE1Lx9m94xyAR7dvsfZh9PV--V6fvbuzWZ5cjbXBa-KeaEprQg3HLSoQJWGa5Fj1vASsCFAa1FTXWndGKYx5qYmdWUqwVhNC2USe5y92Hsvx7qDRoOPg3LycrCdGibZKyv_nnjbyvP-sxSU0ErQJHh2Kxj6TyOEKDsbNDinPPRjkJSlBUvGCp7Qp_-gF_24O35HcVIRQm-oxZ7SQx_CAOawDMFyV7XcVS0PVacPT_484YD_6jYBYg9cWQfTf3RyuV5tf8t_Av60uD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561811246</pqid></control><display><type>article</type><title>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ramanan, Rajeev ; Waheed, Sodiq O. ; Schofield, Christopher J. ; Christov, Christo Z.</creator><creatorcontrib>Ramanan, Rajeev ; Waheed, Sodiq O. ; Schofield, Christopher J. ; Christov, Christo Z.</creatorcontrib><description>Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.
The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202101174</identifier><identifier>PMID: 33989435</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arginine ; Arginine - metabolism ; Binding ; Catalysis ; Chemistry ; Demethylation ; Electric fields ; Electron transfer ; Energy of dissociation ; Epigenesis, Genetic ; Epigenetics ; Free energy ; Heat of formation ; histone demethylation ; Histones ; Histones - metabolism ; Humans ; Hydrogen bonds ; Hydroxylation ; Intermediates ; Iron ; JmjC demethylases (KDMs) ; Jumonji Domain-Containing Histone Demethylases - metabolism ; Lysine ; Methylation ; Molecular dynamics ; non-heme iron enzymes ; QM/MM calculations ; Quantum mechanics ; Substrates</subject><ispartof>Chemistry : a European journal, 2021-08, Vol.27 (46), p.11827-11836</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</citedby><cites>FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</cites><orcidid>0000-0002-5879-0768 ; 0000-0003-3422-4531 ; 0000-0002-4481-0246 ; 0000-0002-0290-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33989435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramanan, Rajeev</creatorcontrib><creatorcontrib>Waheed, Sodiq O.</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><creatorcontrib>Christov, Christo Z.</creatorcontrib><title>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.
The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.</description><subject>Arginine</subject><subject>Arginine - metabolism</subject><subject>Binding</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Demethylation</subject><subject>Electric fields</subject><subject>Electron transfer</subject><subject>Energy of dissociation</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>histone demethylation</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Hydroxylation</subject><subject>Intermediates</subject><subject>Iron</subject><subject>JmjC demethylases (KDMs)</subject><subject>Jumonji Domain-Containing Histone Demethylases - metabolism</subject><subject>Lysine</subject><subject>Methylation</subject><subject>Molecular dynamics</subject><subject>non-heme iron enzymes</subject><subject>QM/MM calculations</subject><subject>Quantum mechanics</subject><subject>Substrates</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURiMEokNhyxJZYsNmBtuJnXgDKsOUGakDGxBLy3GuG1eOU2KHNqx4AsQz8iR4OmX42bCy9N3jo3v1ZdljghcEY_pct9AtKKYEE1IWd7IZYZTM85Kzu9kMi6Kcc5aLo-xBCBcYY8Hz_H52lOeiEkXOZtm3j62KaBNQbAEtVVRuilajLehWeRs61Bu08l-mTu3itQ2x94De_vj6fQuxnRw6Gc6ttyl7Dd1NksDeI-WbpPNoE9ErQBtv3AheQ4PqKc3Q6jrC4JVDKwc6Dkl9asE1Lx9m94xyAR7dvsfZh9PV--V6fvbuzWZ5cjbXBa-KeaEprQg3HLSoQJWGa5Fj1vASsCFAa1FTXWndGKYx5qYmdWUqwVhNC2USe5y92Hsvx7qDRoOPg3LycrCdGibZKyv_nnjbyvP-sxSU0ErQJHh2Kxj6TyOEKDsbNDinPPRjkJSlBUvGCp7Qp_-gF_24O35HcVIRQm-oxZ7SQx_CAOawDMFyV7XcVS0PVacPT_484YD_6jYBYg9cWQfTf3RyuV5tf8t_Av60uD4</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Ramanan, Rajeev</creator><creator>Waheed, Sodiq O.</creator><creator>Schofield, Christopher J.</creator><creator>Christov, Christo Z.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5879-0768</orcidid><orcidid>https://orcid.org/0000-0003-3422-4531</orcidid><orcidid>https://orcid.org/0000-0002-4481-0246</orcidid><orcidid>https://orcid.org/0000-0002-0290-6565</orcidid></search><sort><creationdate>20210816</creationdate><title>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</title><author>Ramanan, Rajeev ; Waheed, Sodiq O. ; Schofield, Christopher J. ; Christov, Christo Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arginine</topic><topic>Arginine - metabolism</topic><topic>Binding</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Demethylation</topic><topic>Electric fields</topic><topic>Electron transfer</topic><topic>Energy of dissociation</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>histone demethylation</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Hydroxylation</topic><topic>Intermediates</topic><topic>Iron</topic><topic>JmjC demethylases (KDMs)</topic><topic>Jumonji Domain-Containing Histone Demethylases - metabolism</topic><topic>Lysine</topic><topic>Methylation</topic><topic>Molecular dynamics</topic><topic>non-heme iron enzymes</topic><topic>QM/MM calculations</topic><topic>Quantum mechanics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanan, Rajeev</creatorcontrib><creatorcontrib>Waheed, Sodiq O.</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><creatorcontrib>Christov, Christo Z.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanan, Rajeev</au><au>Waheed, Sodiq O.</au><au>Schofield, Christopher J.</au><au>Christov, Christo Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-08-16</date><risdate>2021</risdate><volume>27</volume><issue>46</issue><spage>11827</spage><epage>11836</epage><pages>11827-11836</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.
The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33989435</pmid><doi>10.1002/chem.202101174</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5879-0768</orcidid><orcidid>https://orcid.org/0000-0003-3422-4531</orcidid><orcidid>https://orcid.org/0000-0002-4481-0246</orcidid><orcidid>https://orcid.org/0000-0002-0290-6565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2021-08, Vol.27 (46), p.11827-11836 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9212892 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Arginine Arginine - metabolism Binding Catalysis Chemistry Demethylation Electric fields Electron transfer Energy of dissociation Epigenesis, Genetic Epigenetics Free energy Heat of formation histone demethylation Histones Histones - metabolism Humans Hydrogen bonds Hydroxylation Intermediates Iron JmjC demethylases (KDMs) Jumonji Domain-Containing Histone Demethylases - metabolism Lysine Methylation Molecular dynamics non-heme iron enzymes QM/MM calculations Quantum mechanics Substrates |
title | What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Is%20the%20Catalytic%20Mechanism%20of%20Enzymatic%20Histone%20N%E2%80%90Methyl%20Arginine%20Demethylation%20and%20Can%20It%20Be%20Influenced%20by%20an%20External%20Electric%20Field?&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ramanan,%20Rajeev&rft.date=2021-08-16&rft.volume=27&rft.issue=46&rft.spage=11827&rft.epage=11836&rft.pages=11827-11836&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202101174&rft_dat=%3Cproquest_pubme%3E2528175546%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561811246&rft_id=info:pmid/33989435&rfr_iscdi=true |