Loading…

What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?

Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechan...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2021-08, Vol.27 (46), p.11827-11836
Main Authors: Ramanan, Rajeev, Waheed, Sodiq O., Schofield, Christopher J., Christov, Christo Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93
cites cdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93
container_end_page 11836
container_issue 46
container_start_page 11827
container_title Chemistry : a European journal
container_volume 27
creator Ramanan, Rajeev
Waheed, Sodiq O.
Schofield, Christopher J.
Christov, Christo Z.
description Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates. The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.
doi_str_mv 10.1002/chem.202101174
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9212892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528175546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</originalsourceid><addsrcrecordid>eNqFkc1u1DAURiMEokNhyxJZYsNmBtuJnXgDKsOUGakDGxBLy3GuG1eOU2KHNqx4AsQz8iR4OmX42bCy9N3jo3v1ZdljghcEY_pct9AtKKYEE1IWd7IZYZTM85Kzu9kMi6Kcc5aLo-xBCBcYY8Hz_H52lOeiEkXOZtm3j62KaBNQbAEtVVRuilajLehWeRs61Bu08l-mTu3itQ2x94De_vj6fQuxnRw6Gc6ttyl7Dd1NksDeI-WbpPNoE9ErQBtv3AheQ4PqKc3Q6jrC4JVDKwc6Dkl9asE1Lx9m94xyAR7dvsfZh9PV--V6fvbuzWZ5cjbXBa-KeaEprQg3HLSoQJWGa5Fj1vASsCFAa1FTXWndGKYx5qYmdWUqwVhNC2USe5y92Hsvx7qDRoOPg3LycrCdGibZKyv_nnjbyvP-sxSU0ErQJHh2Kxj6TyOEKDsbNDinPPRjkJSlBUvGCp7Qp_-gF_24O35HcVIRQm-oxZ7SQx_CAOawDMFyV7XcVS0PVacPT_484YD_6jYBYg9cWQfTf3RyuV5tf8t_Av60uD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561811246</pqid></control><display><type>article</type><title>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ramanan, Rajeev ; Waheed, Sodiq O. ; Schofield, Christopher J. ; Christov, Christo Z.</creator><creatorcontrib>Ramanan, Rajeev ; Waheed, Sodiq O. ; Schofield, Christopher J. ; Christov, Christo Z.</creatorcontrib><description>Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates. The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202101174</identifier><identifier>PMID: 33989435</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arginine ; Arginine - metabolism ; Binding ; Catalysis ; Chemistry ; Demethylation ; Electric fields ; Electron transfer ; Energy of dissociation ; Epigenesis, Genetic ; Epigenetics ; Free energy ; Heat of formation ; histone demethylation ; Histones ; Histones - metabolism ; Humans ; Hydrogen bonds ; Hydroxylation ; Intermediates ; Iron ; JmjC demethylases (KDMs) ; Jumonji Domain-Containing Histone Demethylases - metabolism ; Lysine ; Methylation ; Molecular dynamics ; non-heme iron enzymes ; QM/MM calculations ; Quantum mechanics ; Substrates</subject><ispartof>Chemistry : a European journal, 2021-08, Vol.27 (46), p.11827-11836</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</citedby><cites>FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</cites><orcidid>0000-0002-5879-0768 ; 0000-0003-3422-4531 ; 0000-0002-4481-0246 ; 0000-0002-0290-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33989435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramanan, Rajeev</creatorcontrib><creatorcontrib>Waheed, Sodiq O.</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><creatorcontrib>Christov, Christo Z.</creatorcontrib><title>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates. The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.</description><subject>Arginine</subject><subject>Arginine - metabolism</subject><subject>Binding</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Demethylation</subject><subject>Electric fields</subject><subject>Electron transfer</subject><subject>Energy of dissociation</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>histone demethylation</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Hydroxylation</subject><subject>Intermediates</subject><subject>Iron</subject><subject>JmjC demethylases (KDMs)</subject><subject>Jumonji Domain-Containing Histone Demethylases - metabolism</subject><subject>Lysine</subject><subject>Methylation</subject><subject>Molecular dynamics</subject><subject>non-heme iron enzymes</subject><subject>QM/MM calculations</subject><subject>Quantum mechanics</subject><subject>Substrates</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURiMEokNhyxJZYsNmBtuJnXgDKsOUGakDGxBLy3GuG1eOU2KHNqx4AsQz8iR4OmX42bCy9N3jo3v1ZdljghcEY_pct9AtKKYEE1IWd7IZYZTM85Kzu9kMi6Kcc5aLo-xBCBcYY8Hz_H52lOeiEkXOZtm3j62KaBNQbAEtVVRuilajLehWeRs61Bu08l-mTu3itQ2x94De_vj6fQuxnRw6Gc6ttyl7Dd1NksDeI-WbpPNoE9ErQBtv3AheQ4PqKc3Q6jrC4JVDKwc6Dkl9asE1Lx9m94xyAR7dvsfZh9PV--V6fvbuzWZ5cjbXBa-KeaEprQg3HLSoQJWGa5Fj1vASsCFAa1FTXWndGKYx5qYmdWUqwVhNC2USe5y92Hsvx7qDRoOPg3LycrCdGibZKyv_nnjbyvP-sxSU0ErQJHh2Kxj6TyOEKDsbNDinPPRjkJSlBUvGCp7Qp_-gF_24O35HcVIRQm-oxZ7SQx_CAOawDMFyV7XcVS0PVacPT_484YD_6jYBYg9cWQfTf3RyuV5tf8t_Av60uD4</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Ramanan, Rajeev</creator><creator>Waheed, Sodiq O.</creator><creator>Schofield, Christopher J.</creator><creator>Christov, Christo Z.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5879-0768</orcidid><orcidid>https://orcid.org/0000-0003-3422-4531</orcidid><orcidid>https://orcid.org/0000-0002-4481-0246</orcidid><orcidid>https://orcid.org/0000-0002-0290-6565</orcidid></search><sort><creationdate>20210816</creationdate><title>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</title><author>Ramanan, Rajeev ; Waheed, Sodiq O. ; Schofield, Christopher J. ; Christov, Christo Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arginine</topic><topic>Arginine - metabolism</topic><topic>Binding</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Demethylation</topic><topic>Electric fields</topic><topic>Electron transfer</topic><topic>Energy of dissociation</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>histone demethylation</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Hydroxylation</topic><topic>Intermediates</topic><topic>Iron</topic><topic>JmjC demethylases (KDMs)</topic><topic>Jumonji Domain-Containing Histone Demethylases - metabolism</topic><topic>Lysine</topic><topic>Methylation</topic><topic>Molecular dynamics</topic><topic>non-heme iron enzymes</topic><topic>QM/MM calculations</topic><topic>Quantum mechanics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanan, Rajeev</creatorcontrib><creatorcontrib>Waheed, Sodiq O.</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><creatorcontrib>Christov, Christo Z.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanan, Rajeev</au><au>Waheed, Sodiq O.</au><au>Schofield, Christopher J.</au><au>Christov, Christo Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-08-16</date><risdate>2021</risdate><volume>27</volume><issue>46</issue><spage>11827</spage><epage>11836</epage><pages>11827-11836</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2‐oxoglutarate dependent Jumonji‐C (JmjC) Nϵ‐methyl lysine histone demethylases also have N‐methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N‐methyl arginine demethylation by human KDM4E and compare the results with those reported for N‐methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen‐bond between the substrate Ser1 and Tyr178. The calculations imply that in either C−H or N−H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N‐methyl arginine demethylation, electron transfer occurs via a σ‐channel; the transition state for the N−H pathway is ∼10 kcal/mol higher than for the C−H pathway due to the higher bond dissociation energy of the N−H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier‐lowering effect on the C−H pathway, by contrast, such EEFs inhibit the N−H activation rate. The overall results imply that KDM4 catalyzed N‐methyl arginine demethylation and N‐methyl lysine demethylation occur via similar C−H ion and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates. The QM/MM calculations of the demethylation of symmetrical dimethylated arginine (R3me2 s) substrate by KDM4E via C−H and N−H pathways show the preference for the former and application of external electric fields (EEFs) increases the rate of C−H activation, while inhibiting the rate of N−H activation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33989435</pmid><doi>10.1002/chem.202101174</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5879-0768</orcidid><orcidid>https://orcid.org/0000-0003-3422-4531</orcidid><orcidid>https://orcid.org/0000-0002-4481-0246</orcidid><orcidid>https://orcid.org/0000-0002-0290-6565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-08, Vol.27 (46), p.11827-11836
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9212892
source Wiley-Blackwell Read & Publish Collection
subjects Arginine
Arginine - metabolism
Binding
Catalysis
Chemistry
Demethylation
Electric fields
Electron transfer
Energy of dissociation
Epigenesis, Genetic
Epigenetics
Free energy
Heat of formation
histone demethylation
Histones
Histones - metabolism
Humans
Hydrogen bonds
Hydroxylation
Intermediates
Iron
JmjC demethylases (KDMs)
Jumonji Domain-Containing Histone Demethylases - metabolism
Lysine
Methylation
Molecular dynamics
non-heme iron enzymes
QM/MM calculations
Quantum mechanics
Substrates
title What Is the Catalytic Mechanism of Enzymatic Histone N‐Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Is%20the%20Catalytic%20Mechanism%20of%20Enzymatic%20Histone%20N%E2%80%90Methyl%20Arginine%20Demethylation%20and%20Can%20It%20Be%20Influenced%20by%20an%20External%20Electric%20Field?&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ramanan,%20Rajeev&rft.date=2021-08-16&rft.volume=27&rft.issue=46&rft.spage=11827&rft.epage=11836&rft.pages=11827-11836&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202101174&rft_dat=%3Cproquest_pubme%3E2528175546%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4684-4c22816f6ec98ea7f6c9305d67e0f1e2b9b2c8ccdf5c006fb1b8f8955b24afc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561811246&rft_id=info:pmid/33989435&rfr_iscdi=true