Loading…

Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine

Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images en...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2022-06, Vol.14 (12), p.2860
Main Authors: Saxena, Sanjay, Jena, Biswajit, Gupta, Neha, Das, Suchismita, Sarmah, Deepaneeta, Bhattacharya, Pallab, Nath, Tanmay, Paul, Sudip, Fouda, Mostafa M., Kalra, Manudeep, Saba, Luca, Pareek, Gyan, Suri, Jasjit S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73
cites cdi_FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73
container_end_page
container_issue 12
container_start_page 2860
container_title Cancers
container_volume 14
creator Saxena, Sanjay
Jena, Biswajit
Gupta, Neha
Das, Suchismita
Sarmah, Deepaneeta
Bhattacharya, Pallab
Nath, Tanmay
Paul, Sudip
Fouda, Mostafa M.
Kalra, Manudeep
Saba, Luca
Pareek, Gyan
Suri, Jasjit S.
description Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
doi_str_mv 10.3390/cancers14122860
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9220825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681039518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73</originalsourceid><addsrcrecordid>eNpdkUtLBDEMgIsoKurZa8GLl9U-Zvq4CLL4AkURPUrJdjJamW21nRX893ZZEbWXtOTjS5MQss_ZkZSWHXuIHnPhDRfCKLZGtgXTYqKUbdZ_3bfIXimvrB4puVZ6k2zJVjesFWqbPN2nAWnq6WkeQx98gIFexRGHITxj1dMQ6T10IdVXmgdfaJ8yna4qL5PjC9KzDEvFXUYfSkiR3mBXVRF3yUYPQ8G977hDHs_PHqaXk-vbi6vp6fXES2vGCecalAHspREooBeMQavBWIugO6089541vkFWI86EsNAx03QtNrOuAy13yMnK-7aYzbHzGMcMg3vLYQ750yUI7m8mhhf3nD6cFYIZ0VbB4bcgp_cFltHNQ_F1ChAxLYoTynAmbctNRQ_-oa9pkWNtr1LaKiNYIyp1vKJ8TqVk7H8-w5lbbs_92578AuY6jfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679682042</pqid></control><display><type>article</type><title>Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Saxena, Sanjay ; Jena, Biswajit ; Gupta, Neha ; Das, Suchismita ; Sarmah, Deepaneeta ; Bhattacharya, Pallab ; Nath, Tanmay ; Paul, Sudip ; Fouda, Mostafa M. ; Kalra, Manudeep ; Saba, Luca ; Pareek, Gyan ; Suri, Jasjit S.</creator><creatorcontrib>Saxena, Sanjay ; Jena, Biswajit ; Gupta, Neha ; Das, Suchismita ; Sarmah, Deepaneeta ; Bhattacharya, Pallab ; Nath, Tanmay ; Paul, Sudip ; Fouda, Mostafa M. ; Kalra, Manudeep ; Saba, Luca ; Pareek, Gyan ; Suri, Jasjit S.</creatorcontrib><description>Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14122860</identifier><identifier>PMID: 35740526</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Biomarkers ; Brain research ; Cancer ; Clinical aspects ; Clinical decision making ; Computer applications ; Deep learning ; Discriminant analysis ; Genomes ; Genomics ; Machine learning ; Mammography ; Medical imaging ; Medical prognosis ; Medical research ; Neural networks ; Oncology ; Patients ; Phenotypes ; Precision medicine ; Prediction models ; Probability distribution ; Prognosis ; Radiomics ; Review ; Survival ; Tumors</subject><ispartof>Cancers, 2022-06, Vol.14 (12), p.2860</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73</citedby><cites>FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73</cites><orcidid>0000-0002-2092-7159 ; 0000-0003-2221-6526 ; 0000-0003-1790-8640 ; 0000-0002-8288-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679682042/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679682042?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Saxena, Sanjay</creatorcontrib><creatorcontrib>Jena, Biswajit</creatorcontrib><creatorcontrib>Gupta, Neha</creatorcontrib><creatorcontrib>Das, Suchismita</creatorcontrib><creatorcontrib>Sarmah, Deepaneeta</creatorcontrib><creatorcontrib>Bhattacharya, Pallab</creatorcontrib><creatorcontrib>Nath, Tanmay</creatorcontrib><creatorcontrib>Paul, Sudip</creatorcontrib><creatorcontrib>Fouda, Mostafa M.</creatorcontrib><creatorcontrib>Kalra, Manudeep</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Pareek, Gyan</creatorcontrib><creatorcontrib>Suri, Jasjit S.</creatorcontrib><title>Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine</title><title>Cancers</title><description>Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.</description><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Brain research</subject><subject>Cancer</subject><subject>Clinical aspects</subject><subject>Clinical decision making</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Oncology</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Precision medicine</subject><subject>Prediction models</subject><subject>Probability distribution</subject><subject>Prognosis</subject><subject>Radiomics</subject><subject>Review</subject><subject>Survival</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtLBDEMgIsoKurZa8GLl9U-Zvq4CLL4AkURPUrJdjJamW21nRX893ZZEbWXtOTjS5MQss_ZkZSWHXuIHnPhDRfCKLZGtgXTYqKUbdZ_3bfIXimvrB4puVZ6k2zJVjesFWqbPN2nAWnq6WkeQx98gIFexRGHITxj1dMQ6T10IdVXmgdfaJ8yna4qL5PjC9KzDEvFXUYfSkiR3mBXVRF3yUYPQ8G977hDHs_PHqaXk-vbi6vp6fXES2vGCecalAHspREooBeMQavBWIugO6089541vkFWI86EsNAx03QtNrOuAy13yMnK-7aYzbHzGMcMg3vLYQ750yUI7m8mhhf3nD6cFYIZ0VbB4bcgp_cFltHNQ_F1ChAxLYoTynAmbctNRQ_-oa9pkWNtr1LaKiNYIyp1vKJ8TqVk7H8-w5lbbs_92578AuY6jfE</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Saxena, Sanjay</creator><creator>Jena, Biswajit</creator><creator>Gupta, Neha</creator><creator>Das, Suchismita</creator><creator>Sarmah, Deepaneeta</creator><creator>Bhattacharya, Pallab</creator><creator>Nath, Tanmay</creator><creator>Paul, Sudip</creator><creator>Fouda, Mostafa M.</creator><creator>Kalra, Manudeep</creator><creator>Saba, Luca</creator><creator>Pareek, Gyan</creator><creator>Suri, Jasjit S.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2092-7159</orcidid><orcidid>https://orcid.org/0000-0003-2221-6526</orcidid><orcidid>https://orcid.org/0000-0003-1790-8640</orcidid><orcidid>https://orcid.org/0000-0002-8288-1010</orcidid></search><sort><creationdate>20220609</creationdate><title>Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine</title><author>Saxena, Sanjay ; Jena, Biswajit ; Gupta, Neha ; Das, Suchismita ; Sarmah, Deepaneeta ; Bhattacharya, Pallab ; Nath, Tanmay ; Paul, Sudip ; Fouda, Mostafa M. ; Kalra, Manudeep ; Saba, Luca ; Pareek, Gyan ; Suri, Jasjit S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Brain research</topic><topic>Cancer</topic><topic>Clinical aspects</topic><topic>Clinical decision making</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Oncology</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Precision medicine</topic><topic>Prediction models</topic><topic>Probability distribution</topic><topic>Prognosis</topic><topic>Radiomics</topic><topic>Review</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saxena, Sanjay</creatorcontrib><creatorcontrib>Jena, Biswajit</creatorcontrib><creatorcontrib>Gupta, Neha</creatorcontrib><creatorcontrib>Das, Suchismita</creatorcontrib><creatorcontrib>Sarmah, Deepaneeta</creatorcontrib><creatorcontrib>Bhattacharya, Pallab</creatorcontrib><creatorcontrib>Nath, Tanmay</creatorcontrib><creatorcontrib>Paul, Sudip</creatorcontrib><creatorcontrib>Fouda, Mostafa M.</creatorcontrib><creatorcontrib>Kalra, Manudeep</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Pareek, Gyan</creatorcontrib><creatorcontrib>Suri, Jasjit S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saxena, Sanjay</au><au>Jena, Biswajit</au><au>Gupta, Neha</au><au>Das, Suchismita</au><au>Sarmah, Deepaneeta</au><au>Bhattacharya, Pallab</au><au>Nath, Tanmay</au><au>Paul, Sudip</au><au>Fouda, Mostafa M.</au><au>Kalra, Manudeep</au><au>Saba, Luca</au><au>Pareek, Gyan</au><au>Suri, Jasjit S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine</atitle><jtitle>Cancers</jtitle><date>2022-06-09</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>2860</spage><pages>2860-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35740526</pmid><doi>10.3390/cancers14122860</doi><orcidid>https://orcid.org/0000-0002-2092-7159</orcidid><orcidid>https://orcid.org/0000-0003-2221-6526</orcidid><orcidid>https://orcid.org/0000-0003-1790-8640</orcidid><orcidid>https://orcid.org/0000-0002-8288-1010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2022-06, Vol.14 (12), p.2860
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9220825
source Publicly Available Content Database; PubMed Central
subjects Artificial intelligence
Biomarkers
Brain research
Cancer
Clinical aspects
Clinical decision making
Computer applications
Deep learning
Discriminant analysis
Genomes
Genomics
Machine learning
Mammography
Medical imaging
Medical prognosis
Medical research
Neural networks
Oncology
Patients
Phenotypes
Precision medicine
Prediction models
Probability distribution
Prognosis
Radiomics
Review
Survival
Tumors
title Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Artificial%20Intelligence%20in%20Radiogenomics%20for%20Cancers%20in%20the%20Era%20of%20Precision%20Medicine&rft.jtitle=Cancers&rft.au=Saxena,%20Sanjay&rft.date=2022-06-09&rft.volume=14&rft.issue=12&rft.spage=2860&rft.pages=2860-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14122860&rft_dat=%3Cproquest_pubme%3E2681039518%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-117a68aef382e2af200a57a899ea7d76c1cc04c4e0cc0eb229ad084d5e4bdda73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679682042&rft_id=info:pmid/35740526&rfr_iscdi=true