Loading…

Release Kinetics and In Vitro Characterization of Sodium Percarbonate and Calcium Peroxide to Oxygenate Bioprinted Tissue Models

Oxygen-generating materials have been used in several tissue engineering applications; however, their application as in situ oxygen supply within bioprinted constructs has not been deeply studied. In this study, two oxygen-generating materials, sodium percarbonate (SPO) and calcium peroxide (CPO), w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-06, Vol.23 (12), p.6842
Main Authors: Ke, Dongxu, Kengla, Carlos, Lee, Sang Jin, Yoo, James J., Zhu, Xuesong, Murphy, Sean Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxygen-generating materials have been used in several tissue engineering applications; however, their application as in situ oxygen supply within bioprinted constructs has not been deeply studied. In this study, two oxygen-generating materials, sodium percarbonate (SPO) and calcium peroxide (CPO), were studied for their oxygen release kinetics under a 0.1% O2 condition. In addition, a novel cell-culture-insert setup was used to evaluate the effects of SPO and CPO on the viability of skeletal muscle cells under the same hypoxic condition. Results showed that SPO had a burst oxygen release, while CPO had a more stable oxygen release than SPO. Both SPO and CPO reduced cell viability when used alone. The addition of catalase in SPO and CPO increased the oxygen release rate, as well as improving the viability of skeletal muscle cells; however, CPO still showed cytotoxicity with catalase. Additionally, the utilization of 1 mg/mL SPO and 20 U catalase in a hydrogel for bioprinting significantly enhanced the cell viability under the hypoxic condition. Moreover, bioprinted muscle constructs could further differentiate into elongated myotubes when transferring back to the normoxic condition. This work provides an excellent in vitro model to test oxygen-generating materials and further discover their applications in bioprinting, where they represent promising avenues to overcome the challenge of oxygen shortage in bioprinted constructs before their complete vascularization.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23126842