Loading…
Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites
Particle-reinforced composites are widely applied as nuclear radiation shielding materials for their excellent comprehensive properties. The work aimed to calculate the influence of the functional reinforced particles spatial arrangement on the neutron shielding performance of composites and attempt...
Saved in:
Published in: | Materials 2022-06, Vol.15 (12), p.4266 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93 |
container_end_page | |
container_issue | 12 |
container_start_page | 4266 |
container_title | Materials |
container_volume | 15 |
creator | Sun, Weiqiang Hu, Guang Xu, Hu Li, Yanfei Wang, Chao Men, Tingxuan Ji, Fu Lao, Wanji Yu, Bo Sheng, Liang Li, Jinhong Jia, Qinggang Xiong, Songqi Hu, Huasi |
description | Particle-reinforced composites are widely applied as nuclear radiation shielding materials for their excellent comprehensive properties. The work aimed to calculate the influence of the functional reinforced particles spatial arrangement on the neutron shielding performance of composites and attempted to explain the influence mechanism by investigating the neutron flux distribution in the materials. Firstly, four suitable physical models were established based on the Monte Carlo Particle Transport Program (MCNP) and mathematical software MATLAB, namely the RSA (Random Sequential Adsorption) Model with particles random arrangement and FCC Model, BCC Model and Staggered Arrangement Model (SA Model) with particle periodic arrangements. Later, based on these four physical models, the neutron transmittance of two kinds of typical B4C reinforced composites, 316 stainless steel matrix composite and polyethylene matrix composite, were calculated under different energy neutrons sources (0.0253 eV, 50 eV, 50 keV, fission spectrum, 241Am-Be spectrum and 14.1 MeV) and the neutron flux distribution in the 316 stainless steel composite was also analyzed under 0.0253 eV neutron and fission neutron sources. The results indicated that the spatial arrangement of B4C has an impact on the neutrons shielding performance of the composite and the influence changes with neutron energy and B4C content. It can be concluded that the RSA model and the periodic arrangement models can be used in different calculation cases in the future. |
doi_str_mv | 10.3390/ma15124266 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679788779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93</originalsourceid><addsrcrecordid>eNpdkdtKJDEQhsOiqIxz4xMEvFmE2c2p050bQYY9CKLi6HXIpCszGbqTMUkvzNtvD84etG6qoP76-KsKoQtKvnCuyNfe0IoywaT8hM6oUnJGlRBH_9WnaJrzhozBOW2YOkGnvKqF4Kw6Q7tFGdodjgGXNeDb4LoBggUcHX4CH1xMFlr8aFLxtoOMF1tTvOnwTUomrKCHUP4M38NQ0lgv1h661ocVfoQ0AnpzAO5F89hvY_YF8jk6dqbLMD3kCXr5_u15_nN29_Djdn5zN7O84WVmneROytpUlhDJWsKNaI1ThFiQjVCVapVxpFKCiUZQ6QSnFefCLU29ZFbxCbp-426HZQ-tHR0n0-lt8r1JOx2N1-87wa_1Kv7SirFacDECPh8AKb4OkIvufbbQdSZAHLJmsqFEUDGed4IuP0g3cUhhXG9U1apumrreO7p6U9kUc07g_pqhRO-fqv89lf8GJkqTsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679788779</pqid></control><display><type>article</type><title>Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Weiqiang ; Hu, Guang ; Xu, Hu ; Li, Yanfei ; Wang, Chao ; Men, Tingxuan ; Ji, Fu ; Lao, Wanji ; Yu, Bo ; Sheng, Liang ; Li, Jinhong ; Jia, Qinggang ; Xiong, Songqi ; Hu, Huasi</creator><creatorcontrib>Sun, Weiqiang ; Hu, Guang ; Xu, Hu ; Li, Yanfei ; Wang, Chao ; Men, Tingxuan ; Ji, Fu ; Lao, Wanji ; Yu, Bo ; Sheng, Liang ; Li, Jinhong ; Jia, Qinggang ; Xiong, Songqi ; Hu, Huasi</creatorcontrib><description>Particle-reinforced composites are widely applied as nuclear radiation shielding materials for their excellent comprehensive properties. The work aimed to calculate the influence of the functional reinforced particles spatial arrangement on the neutron shielding performance of composites and attempted to explain the influence mechanism by investigating the neutron flux distribution in the materials. Firstly, four suitable physical models were established based on the Monte Carlo Particle Transport Program (MCNP) and mathematical software MATLAB, namely the RSA (Random Sequential Adsorption) Model with particles random arrangement and FCC Model, BCC Model and Staggered Arrangement Model (SA Model) with particle periodic arrangements. Later, based on these four physical models, the neutron transmittance of two kinds of typical B4C reinforced composites, 316 stainless steel matrix composite and polyethylene matrix composite, were calculated under different energy neutrons sources (0.0253 eV, 50 eV, 50 keV, fission spectrum, 241Am-Be spectrum and 14.1 MeV) and the neutron flux distribution in the 316 stainless steel composite was also analyzed under 0.0253 eV neutron and fission neutron sources. The results indicated that the spatial arrangement of B4C has an impact on the neutrons shielding performance of the composite and the influence changes with neutron energy and B4C content. It can be concluded that the RSA model and the periodic arrangement models can be used in different calculation cases in the future.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15124266</identifier><identifier>PMID: 35744325</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Austenitic stainless steels ; Body centered cubic lattice ; Boron carbide ; Experiments ; Face centered cubic lattice ; Influence ; Mathematical analysis ; Metal matrix composites ; Neutron flux ; Neutron sources ; Neutrons ; Nuclear radiation ; Particle physics ; Particle size ; Particulate composites ; Polyethylene ; Polyethylenes ; Radiation ; Radiation shielding ; Simulation ; Stainless steel</subject><ispartof>Materials, 2022-06, Vol.15 (12), p.4266</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93</citedby><cites>FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93</cites><orcidid>0000-0002-4983-3703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679788779/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679788779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Sun, Weiqiang</creatorcontrib><creatorcontrib>Hu, Guang</creatorcontrib><creatorcontrib>Xu, Hu</creatorcontrib><creatorcontrib>Li, Yanfei</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Men, Tingxuan</creatorcontrib><creatorcontrib>Ji, Fu</creatorcontrib><creatorcontrib>Lao, Wanji</creatorcontrib><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Sheng, Liang</creatorcontrib><creatorcontrib>Li, Jinhong</creatorcontrib><creatorcontrib>Jia, Qinggang</creatorcontrib><creatorcontrib>Xiong, Songqi</creatorcontrib><creatorcontrib>Hu, Huasi</creatorcontrib><title>Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites</title><title>Materials</title><description>Particle-reinforced composites are widely applied as nuclear radiation shielding materials for their excellent comprehensive properties. The work aimed to calculate the influence of the functional reinforced particles spatial arrangement on the neutron shielding performance of composites and attempted to explain the influence mechanism by investigating the neutron flux distribution in the materials. Firstly, four suitable physical models were established based on the Monte Carlo Particle Transport Program (MCNP) and mathematical software MATLAB, namely the RSA (Random Sequential Adsorption) Model with particles random arrangement and FCC Model, BCC Model and Staggered Arrangement Model (SA Model) with particle periodic arrangements. Later, based on these four physical models, the neutron transmittance of two kinds of typical B4C reinforced composites, 316 stainless steel matrix composite and polyethylene matrix composite, were calculated under different energy neutrons sources (0.0253 eV, 50 eV, 50 keV, fission spectrum, 241Am-Be spectrum and 14.1 MeV) and the neutron flux distribution in the 316 stainless steel composite was also analyzed under 0.0253 eV neutron and fission neutron sources. The results indicated that the spatial arrangement of B4C has an impact on the neutrons shielding performance of the composite and the influence changes with neutron energy and B4C content. It can be concluded that the RSA model and the periodic arrangement models can be used in different calculation cases in the future.</description><subject>Austenitic stainless steels</subject><subject>Body centered cubic lattice</subject><subject>Boron carbide</subject><subject>Experiments</subject><subject>Face centered cubic lattice</subject><subject>Influence</subject><subject>Mathematical analysis</subject><subject>Metal matrix composites</subject><subject>Neutron flux</subject><subject>Neutron sources</subject><subject>Neutrons</subject><subject>Nuclear radiation</subject><subject>Particle physics</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Polyethylene</subject><subject>Polyethylenes</subject><subject>Radiation</subject><subject>Radiation shielding</subject><subject>Simulation</subject><subject>Stainless steel</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdtKJDEQhsOiqIxz4xMEvFmE2c2p050bQYY9CKLi6HXIpCszGbqTMUkvzNtvD84etG6qoP76-KsKoQtKvnCuyNfe0IoywaT8hM6oUnJGlRBH_9WnaJrzhozBOW2YOkGnvKqF4Kw6Q7tFGdodjgGXNeDb4LoBggUcHX4CH1xMFlr8aFLxtoOMF1tTvOnwTUomrKCHUP4M38NQ0lgv1h661ocVfoQ0AnpzAO5F89hvY_YF8jk6dqbLMD3kCXr5_u15_nN29_Djdn5zN7O84WVmneROytpUlhDJWsKNaI1ThFiQjVCVapVxpFKCiUZQ6QSnFefCLU29ZFbxCbp-426HZQ-tHR0n0-lt8r1JOx2N1-87wa_1Kv7SirFacDECPh8AKb4OkIvufbbQdSZAHLJmsqFEUDGed4IuP0g3cUhhXG9U1apumrreO7p6U9kUc07g_pqhRO-fqv89lf8GJkqTsA</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Sun, Weiqiang</creator><creator>Hu, Guang</creator><creator>Xu, Hu</creator><creator>Li, Yanfei</creator><creator>Wang, Chao</creator><creator>Men, Tingxuan</creator><creator>Ji, Fu</creator><creator>Lao, Wanji</creator><creator>Yu, Bo</creator><creator>Sheng, Liang</creator><creator>Li, Jinhong</creator><creator>Jia, Qinggang</creator><creator>Xiong, Songqi</creator><creator>Hu, Huasi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4983-3703</orcidid></search><sort><creationdate>20220616</creationdate><title>Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites</title><author>Sun, Weiqiang ; Hu, Guang ; Xu, Hu ; Li, Yanfei ; Wang, Chao ; Men, Tingxuan ; Ji, Fu ; Lao, Wanji ; Yu, Bo ; Sheng, Liang ; Li, Jinhong ; Jia, Qinggang ; Xiong, Songqi ; Hu, Huasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Austenitic stainless steels</topic><topic>Body centered cubic lattice</topic><topic>Boron carbide</topic><topic>Experiments</topic><topic>Face centered cubic lattice</topic><topic>Influence</topic><topic>Mathematical analysis</topic><topic>Metal matrix composites</topic><topic>Neutron flux</topic><topic>Neutron sources</topic><topic>Neutrons</topic><topic>Nuclear radiation</topic><topic>Particle physics</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Polyethylene</topic><topic>Polyethylenes</topic><topic>Radiation</topic><topic>Radiation shielding</topic><topic>Simulation</topic><topic>Stainless steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weiqiang</creatorcontrib><creatorcontrib>Hu, Guang</creatorcontrib><creatorcontrib>Xu, Hu</creatorcontrib><creatorcontrib>Li, Yanfei</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Men, Tingxuan</creatorcontrib><creatorcontrib>Ji, Fu</creatorcontrib><creatorcontrib>Lao, Wanji</creatorcontrib><creatorcontrib>Yu, Bo</creatorcontrib><creatorcontrib>Sheng, Liang</creatorcontrib><creatorcontrib>Li, Jinhong</creatorcontrib><creatorcontrib>Jia, Qinggang</creatorcontrib><creatorcontrib>Xiong, Songqi</creatorcontrib><creatorcontrib>Hu, Huasi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weiqiang</au><au>Hu, Guang</au><au>Xu, Hu</au><au>Li, Yanfei</au><au>Wang, Chao</au><au>Men, Tingxuan</au><au>Ji, Fu</au><au>Lao, Wanji</au><au>Yu, Bo</au><au>Sheng, Liang</au><au>Li, Jinhong</au><au>Jia, Qinggang</au><au>Xiong, Songqi</au><au>Hu, Huasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites</atitle><jtitle>Materials</jtitle><date>2022-06-16</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>4266</spage><pages>4266-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Particle-reinforced composites are widely applied as nuclear radiation shielding materials for their excellent comprehensive properties. The work aimed to calculate the influence of the functional reinforced particles spatial arrangement on the neutron shielding performance of composites and attempted to explain the influence mechanism by investigating the neutron flux distribution in the materials. Firstly, four suitable physical models were established based on the Monte Carlo Particle Transport Program (MCNP) and mathematical software MATLAB, namely the RSA (Random Sequential Adsorption) Model with particles random arrangement and FCC Model, BCC Model and Staggered Arrangement Model (SA Model) with particle periodic arrangements. Later, based on these four physical models, the neutron transmittance of two kinds of typical B4C reinforced composites, 316 stainless steel matrix composite and polyethylene matrix composite, were calculated under different energy neutrons sources (0.0253 eV, 50 eV, 50 keV, fission spectrum, 241Am-Be spectrum and 14.1 MeV) and the neutron flux distribution in the 316 stainless steel composite was also analyzed under 0.0253 eV neutron and fission neutron sources. The results indicated that the spatial arrangement of B4C has an impact on the neutrons shielding performance of the composite and the influence changes with neutron energy and B4C content. It can be concluded that the RSA model and the periodic arrangement models can be used in different calculation cases in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35744325</pmid><doi>10.3390/ma15124266</doi><orcidid>https://orcid.org/0000-0002-4983-3703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-06, Vol.15 (12), p.4266 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227434 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Austenitic stainless steels Body centered cubic lattice Boron carbide Experiments Face centered cubic lattice Influence Mathematical analysis Metal matrix composites Neutron flux Neutron sources Neutrons Nuclear radiation Particle physics Particle size Particulate composites Polyethylene Polyethylenes Radiation Radiation shielding Simulation Stainless steel |
title | Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Influence%20of%20Reinforced%20Particles%20Spatial%20Arrangement%20on%20the%20Neutron%20Shielding%20Performance%20of%20the%20Composites&rft.jtitle=Materials&rft.au=Sun,%20Weiqiang&rft.date=2022-06-16&rft.volume=15&rft.issue=12&rft.spage=4266&rft.pages=4266-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15124266&rft_dat=%3Cproquest_pubme%3E2679788779%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-cf63f667a5c0062d03a4daf900ce684959d9af0594248416f4315334fba7b2c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679788779&rft_id=info:pmid/35744325&rfr_iscdi=true |