Loading…

Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties

A green ZnO@polynaniline/bentonite composite (G.Zn@PN/BE) was synthesized as an enhanced adsorbent for As (V) ions. Its adsorption properties were assessed in comparison with the integrated components of bentonite (BE) and polyaniline/bentonite (PN/BE) composites. The G.Zn@PN/BE composite achieved a...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-06, Vol.14 (12), p.2329
Main Authors: Abdel Salam, Mohamed, Mokhtar, Mohamed, Albukhari, Soha M., Baamer, Doaa F., Palmisano, Leonardo, Jaremko, Mariusz, Abukhadra, Mostafa R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A green ZnO@polynaniline/bentonite composite (G.Zn@PN/BE) was synthesized as an enhanced adsorbent for As (V) ions. Its adsorption properties were assessed in comparison with the integrated components of bentonite (BE) and polyaniline/bentonite (PN/BE) composites. The G.Zn@PN/BE composite achieved an As (V) retention capacity (213 mg/g) higher than BE (72.7 mg/g) and PN/BE (119.8 mg/g). The enhanced capacity of G.Zn@PN/BE was studied using classic (Langmuir) and advanced equilibrium (monolayer model of one energy) models. Considering the steric properties, the structure of G.Zn@PN/BE demonstrated a higher density of active sites (Nm = 109.8 (20 °C), 108.9 (30 °C), and 67.8 mg/g (40 °C)) than BE and PN/BE. This declared the effect of the integration process in inducing the retention capacity by increasing the quantities of the active sites. The number of adsorbed As (V) ions per site (1.76 up to 2.13) signifies the retention of two or three ions per site by a multi-ionic mechanism. The adsorption energies (from −3.07 to −3.26 kJ/mol) suggested physical retention mechanisms (hydrogen bonding and dipole bonding forces). The adsorption energy, internal energy, and free enthalpy reflected the exothermic, feasible, and spontaneous nature of the retention process. The structure is of significant As (V) uptake capacity in the existence of competitive anions or metal ions.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14122329