Loading…

Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide

Goos-Hänchen shift provides a way to manipulate the transverse shift of an optical beam with sub-wavelength accuracy. Among various enhancement schemes, millimeter-scale shift at near-infrared range has been realized by a simple symmetrical metal-cladding waveguide structure owing to its unique ultr...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-06, Vol.15 (12), p.4267
Main Authors: Kan, Xue Fen, Zou, Zhi Xin, Yin, Cheng, Xu, Hui Ping, Wang, Xian Ping, Han, Qing Bang, Cao, Zhuang Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3
cites cdi_FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3
container_end_page
container_issue 12
container_start_page 4267
container_title Materials
container_volume 15
creator Kan, Xue Fen
Zou, Zhi Xin
Yin, Cheng
Xu, Hui Ping
Wang, Xian Ping
Han, Qing Bang
Cao, Zhuang Qi
description Goos-Hänchen shift provides a way to manipulate the transverse shift of an optical beam with sub-wavelength accuracy. Among various enhancement schemes, millimeter-scale shift at near-infrared range has been realized by a simple symmetrical metal-cladding waveguide structure owing to its unique ultrahigh-order modes. However, the interpretation of the shift depends crucially on its definition. This paper shows that the shift of a Gaussian beam is discrete if we follow the light peak based on the stationary phase approach, where the M-lines are fixed to specific directions and the beam profile is separated near resonance. On the contrary, continuous shift can be obtained if the waveguide is illuminated by a vortex beam, and the physical cause can be attributed to the position-dependent phase-match condition of the ultrahigh-order modes due to the spatial phase distribution.
doi_str_mv 10.3390/ma15124267
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9230043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681041406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMoKqs3PkHAGxGqOTVtbgRdPIHihafLMJumu5E20aRd3PfxTXwxKyue5mYG5uPnn_kR2qHkgHNFDlugOWWCyWIFbVKlZEaVEKu_5g20ndITGYpzWjK1jjZ4XgjBmdxEd-PgO-f70Cd8HkLKLt7fvJlZj29nru5wqPFDiJ19xScWWjx3gG8XbWu76Ay-th002biBqnJ-ih9hbqe9q-wWWquhSXb7q4_Q_dnp3fgiu7o5vxwfX2WGl7zLcgYcpKy5mFDJgOSSiYIVJRGUKCoKKmuW8wqAUpOzupyYCSjDGCmAl1ZZPkJHS93nftLayljfRWj0c3QtxIUO4PTfjXczPQ1zrRgnRPBBYO9LIIaX3qZOty4Z2zTg7fARzWRJBzeCyAHd_Yc-hT764byBKtTgmqpPan9JmRhSirb-NkOJ_sxL_-TFPwCwCIWW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679780196</pqid></control><display><type>article</type><title>Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kan, Xue Fen ; Zou, Zhi Xin ; Yin, Cheng ; Xu, Hui Ping ; Wang, Xian Ping ; Han, Qing Bang ; Cao, Zhuang Qi</creator><creatorcontrib>Kan, Xue Fen ; Zou, Zhi Xin ; Yin, Cheng ; Xu, Hui Ping ; Wang, Xian Ping ; Han, Qing Bang ; Cao, Zhuang Qi</creatorcontrib><description>Goos-Hänchen shift provides a way to manipulate the transverse shift of an optical beam with sub-wavelength accuracy. Among various enhancement schemes, millimeter-scale shift at near-infrared range has been realized by a simple symmetrical metal-cladding waveguide structure owing to its unique ultrahigh-order modes. However, the interpretation of the shift depends crucially on its definition. This paper shows that the shift of a Gaussian beam is discrete if we follow the light peak based on the stationary phase approach, where the M-lines are fixed to specific directions and the beam profile is separated near resonance. On the contrary, continuous shift can be obtained if the waveguide is illuminated by a vortex beam, and the physical cause can be attributed to the position-dependent phase-match condition of the ultrahigh-order modes due to the spatial phase distribution.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15124267</identifier><identifier>PMID: 35744326</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Clad metals ; Cladding ; Electron beams ; Gaussian beams (optics) ; Light ; Phase distribution ; Propagation ; Waveguides</subject><ispartof>Materials, 2022-06, Vol.15 (12), p.4267</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3</citedby><cites>FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679780196/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679780196?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Kan, Xue Fen</creatorcontrib><creatorcontrib>Zou, Zhi Xin</creatorcontrib><creatorcontrib>Yin, Cheng</creatorcontrib><creatorcontrib>Xu, Hui Ping</creatorcontrib><creatorcontrib>Wang, Xian Ping</creatorcontrib><creatorcontrib>Han, Qing Bang</creatorcontrib><creatorcontrib>Cao, Zhuang Qi</creatorcontrib><title>Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide</title><title>Materials</title><description>Goos-Hänchen shift provides a way to manipulate the transverse shift of an optical beam with sub-wavelength accuracy. Among various enhancement schemes, millimeter-scale shift at near-infrared range has been realized by a simple symmetrical metal-cladding waveguide structure owing to its unique ultrahigh-order modes. However, the interpretation of the shift depends crucially on its definition. This paper shows that the shift of a Gaussian beam is discrete if we follow the light peak based on the stationary phase approach, where the M-lines are fixed to specific directions and the beam profile is separated near resonance. On the contrary, continuous shift can be obtained if the waveguide is illuminated by a vortex beam, and the physical cause can be attributed to the position-dependent phase-match condition of the ultrahigh-order modes due to the spatial phase distribution.</description><subject>Clad metals</subject><subject>Cladding</subject><subject>Electron beams</subject><subject>Gaussian beams (optics)</subject><subject>Light</subject><subject>Phase distribution</subject><subject>Propagation</subject><subject>Waveguides</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkdtKxDAQhoMoKqs3PkHAGxGqOTVtbgRdPIHihafLMJumu5E20aRd3PfxTXwxKyue5mYG5uPnn_kR2qHkgHNFDlugOWWCyWIFbVKlZEaVEKu_5g20ndITGYpzWjK1jjZ4XgjBmdxEd-PgO-f70Cd8HkLKLt7fvJlZj29nru5wqPFDiJ19xScWWjx3gG8XbWu76Ay-th002biBqnJ-ih9hbqe9q-wWWquhSXb7q4_Q_dnp3fgiu7o5vxwfX2WGl7zLcgYcpKy5mFDJgOSSiYIVJRGUKCoKKmuW8wqAUpOzupyYCSjDGCmAl1ZZPkJHS93nftLayljfRWj0c3QtxIUO4PTfjXczPQ1zrRgnRPBBYO9LIIaX3qZOty4Z2zTg7fARzWRJBzeCyAHd_Yc-hT764byBKtTgmqpPan9JmRhSirb-NkOJ_sxL_-TFPwCwCIWW</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Kan, Xue Fen</creator><creator>Zou, Zhi Xin</creator><creator>Yin, Cheng</creator><creator>Xu, Hui Ping</creator><creator>Wang, Xian Ping</creator><creator>Han, Qing Bang</creator><creator>Cao, Zhuang Qi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220616</creationdate><title>Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide</title><author>Kan, Xue Fen ; Zou, Zhi Xin ; Yin, Cheng ; Xu, Hui Ping ; Wang, Xian Ping ; Han, Qing Bang ; Cao, Zhuang Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clad metals</topic><topic>Cladding</topic><topic>Electron beams</topic><topic>Gaussian beams (optics)</topic><topic>Light</topic><topic>Phase distribution</topic><topic>Propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan, Xue Fen</creatorcontrib><creatorcontrib>Zou, Zhi Xin</creatorcontrib><creatorcontrib>Yin, Cheng</creatorcontrib><creatorcontrib>Xu, Hui Ping</creatorcontrib><creatorcontrib>Wang, Xian Ping</creatorcontrib><creatorcontrib>Han, Qing Bang</creatorcontrib><creatorcontrib>Cao, Zhuang Qi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kan, Xue Fen</au><au>Zou, Zhi Xin</au><au>Yin, Cheng</au><au>Xu, Hui Ping</au><au>Wang, Xian Ping</au><au>Han, Qing Bang</au><au>Cao, Zhuang Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide</atitle><jtitle>Materials</jtitle><date>2022-06-16</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>4267</spage><pages>4267-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Goos-Hänchen shift provides a way to manipulate the transverse shift of an optical beam with sub-wavelength accuracy. Among various enhancement schemes, millimeter-scale shift at near-infrared range has been realized by a simple symmetrical metal-cladding waveguide structure owing to its unique ultrahigh-order modes. However, the interpretation of the shift depends crucially on its definition. This paper shows that the shift of a Gaussian beam is discrete if we follow the light peak based on the stationary phase approach, where the M-lines are fixed to specific directions and the beam profile is separated near resonance. On the contrary, continuous shift can be obtained if the waveguide is illuminated by a vortex beam, and the physical cause can be attributed to the position-dependent phase-match condition of the ultrahigh-order modes due to the spatial phase distribution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35744326</pmid><doi>10.3390/ma15124267</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-06, Vol.15 (12), p.4267
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9230043
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Clad metals
Cladding
Electron beams
Gaussian beams (optics)
Light
Phase distribution
Propagation
Waveguides
title Continuous Goos-Hänchen Shift of Vortex Beam via Symmetric Metal-Cladding Waveguide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Goos-H%C3%A4nchen%20Shift%20of%20Vortex%20Beam%20via%20Symmetric%20Metal-Cladding%20Waveguide&rft.jtitle=Materials&rft.au=Kan,%20Xue%20Fen&rft.date=2022-06-16&rft.volume=15&rft.issue=12&rft.spage=4267&rft.pages=4267-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15124267&rft_dat=%3Cproquest_pubme%3E2681041406%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-52a3a66f34b162a0562472780410914716f253daa11c52f8bcba9c2207a38e9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679780196&rft_id=info:pmid/35744326&rfr_iscdi=true