Loading…

Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity

The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cyto...

Full description

Saved in:
Bibliographic Details
Published in:ACS macro letters 2021-09, Vol.10 (9), p.1151-1158
Main Authors: Sheung, Janet Y, Achiriloaie, Daisy H, Currie, Christopher, Peddireddy, Karthik, Xie, Aaron, Simon-Parker, Jessalyn, Lee, Gloria, Rust, Michael J, Das, Moumita, Ross, Jennifer L, Robertson-Anderson, Rae M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173
cites cdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173
container_end_page 1158
container_issue 9
container_start_page 1151
container_title ACS macro letters
container_volume 10
creator Sheung, Janet Y
Achiriloaie, Daisy H
Currie, Christopher
Peddireddy, Karthik
Xie, Aaron
Simon-Parker, Jessalyn
Lee, Gloria
Rust, Michael J
Das, Moumita
Ross, Jennifer L
Robertson-Anderson, Rae M
description The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.
doi_str_mv 10.1021/acsmacrolett.1c00500
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664805872</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaJYqf4DkT162Zrv3b0IUusHVAQpHg1pOluju5uaZIX-eyOtUi_OZQbmvTfDewidEjwimJILbUKrjXcNxDgiBmOB8R46okSSnEjB9nfmAToJ4Q2nEpKUFT9EAyYEr3BJjtDLg4vO59fefkKXPUGIvjex97ZbZq7OxuvowjukM67Lxq5duWAjhGwKehGy6LJZ3-l5A9nMtpA_a7_-Jk4aHaI1Nq6P0UGtmwAn2z5Es5vJbHyXTx9v78dX01xzzGJOSAVQU865oYZyxhe8NJJRKYq6ZoKKNOl5BWVZlQnCpAQ-B6q1pAUmBRuiy43sqp-3sDDQRa8btfK2TS8pp636u-nsq1q6T1VRVhWCJIHzrYB3H31yQbU2GGga3YHrg6JS8hKLsqAJyjfQZH8IHurfMwSr73DUbjhqG06ine2--Ev6iSIB8AaQ6OrN9b5Lhv2v-QXha6CN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664805872</pqid></control><display><type>article</type><title>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sheung, Janet Y ; Achiriloaie, Daisy H ; Currie, Christopher ; Peddireddy, Karthik ; Xie, Aaron ; Simon-Parker, Jessalyn ; Lee, Gloria ; Rust, Michael J ; Das, Moumita ; Ross, Jennifer L ; Robertson-Anderson, Rae M</creator><creatorcontrib>Sheung, Janet Y ; Achiriloaie, Daisy H ; Currie, Christopher ; Peddireddy, Karthik ; Xie, Aaron ; Simon-Parker, Jessalyn ; Lee, Gloria ; Rust, Michael J ; Das, Moumita ; Ross, Jennifer L ; Robertson-Anderson, Rae M</creatorcontrib><description>The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.1c00500</identifier><identifier>PMID: 35549081</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2021-09, Vol.10 (9), p.1151-1158</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</citedby><cites>FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</cites><orcidid>0000-0003-4282-5484 ; 0000-0003-4694-9740 ; 0000-0003-4475-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35549081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheung, Janet Y</creatorcontrib><creatorcontrib>Achiriloaie, Daisy H</creatorcontrib><creatorcontrib>Currie, Christopher</creatorcontrib><creatorcontrib>Peddireddy, Karthik</creatorcontrib><creatorcontrib>Xie, Aaron</creatorcontrib><creatorcontrib>Simon-Parker, Jessalyn</creatorcontrib><creatorcontrib>Lee, Gloria</creatorcontrib><creatorcontrib>Rust, Michael J</creatorcontrib><creatorcontrib>Das, Moumita</creatorcontrib><creatorcontrib>Ross, Jennifer L</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><title>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LAzEQDaJYqf4DkT162Zrv3b0IUusHVAQpHg1pOluju5uaZIX-eyOtUi_OZQbmvTfDewidEjwimJILbUKrjXcNxDgiBmOB8R46okSSnEjB9nfmAToJ4Q2nEpKUFT9EAyYEr3BJjtDLg4vO59fefkKXPUGIvjex97ZbZq7OxuvowjukM67Lxq5duWAjhGwKehGy6LJZ3-l5A9nMtpA_a7_-Jk4aHaI1Nq6P0UGtmwAn2z5Es5vJbHyXTx9v78dX01xzzGJOSAVQU865oYZyxhe8NJJRKYq6ZoKKNOl5BWVZlQnCpAQ-B6q1pAUmBRuiy43sqp-3sDDQRa8btfK2TS8pp636u-nsq1q6T1VRVhWCJIHzrYB3H31yQbU2GGga3YHrg6JS8hKLsqAJyjfQZH8IHurfMwSr73DUbjhqG06ine2--Ev6iSIB8AaQ6OrN9b5Lhv2v-QXha6CN</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Sheung, Janet Y</creator><creator>Achiriloaie, Daisy H</creator><creator>Currie, Christopher</creator><creator>Peddireddy, Karthik</creator><creator>Xie, Aaron</creator><creator>Simon-Parker, Jessalyn</creator><creator>Lee, Gloria</creator><creator>Rust, Michael J</creator><creator>Das, Moumita</creator><creator>Ross, Jennifer L</creator><creator>Robertson-Anderson, Rae M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4282-5484</orcidid><orcidid>https://orcid.org/0000-0003-4694-9740</orcidid><orcidid>https://orcid.org/0000-0003-4475-4667</orcidid></search><sort><creationdate>20210921</creationdate><title>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</title><author>Sheung, Janet Y ; Achiriloaie, Daisy H ; Currie, Christopher ; Peddireddy, Karthik ; Xie, Aaron ; Simon-Parker, Jessalyn ; Lee, Gloria ; Rust, Michael J ; Das, Moumita ; Ross, Jennifer L ; Robertson-Anderson, Rae M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sheung, Janet Y</creatorcontrib><creatorcontrib>Achiriloaie, Daisy H</creatorcontrib><creatorcontrib>Currie, Christopher</creatorcontrib><creatorcontrib>Peddireddy, Karthik</creatorcontrib><creatorcontrib>Xie, Aaron</creatorcontrib><creatorcontrib>Simon-Parker, Jessalyn</creatorcontrib><creatorcontrib>Lee, Gloria</creatorcontrib><creatorcontrib>Rust, Michael J</creatorcontrib><creatorcontrib>Das, Moumita</creatorcontrib><creatorcontrib>Ross, Jennifer L</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheung, Janet Y</au><au>Achiriloaie, Daisy H</au><au>Currie, Christopher</au><au>Peddireddy, Karthik</au><au>Xie, Aaron</au><au>Simon-Parker, Jessalyn</au><au>Lee, Gloria</au><au>Rust, Michael J</au><au>Das, Moumita</au><au>Ross, Jennifer L</au><au>Robertson-Anderson, Rae M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2021-09-21</date><risdate>2021</risdate><volume>10</volume><issue>9</issue><spage>1151</spage><epage>1158</epage><pages>1151-1158</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35549081</pmid><doi>10.1021/acsmacrolett.1c00500</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4282-5484</orcidid><orcidid>https://orcid.org/0000-0003-4694-9740</orcidid><orcidid>https://orcid.org/0000-0003-4475-4667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-1653
ispartof ACS macro letters, 2021-09, Vol.10 (9), p.1151-1158
issn 2161-1653
2161-1653
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239751
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor-Driven%20Restructuring%20of%20Cytoskeleton%20Composites%20Leads%20to%20Tunable%20Time-Varying%20Elasticity&rft.jtitle=ACS%20macro%20letters&rft.au=Sheung,%20Janet%20Y&rft.date=2021-09-21&rft.volume=10&rft.issue=9&rft.spage=1151&rft.epage=1158&rft.pages=1151-1158&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.1c00500&rft_dat=%3Cproquest_pubme%3E2664805872%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664805872&rft_id=info:pmid/35549081&rfr_iscdi=true