Loading…
Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity
The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cyto...
Saved in:
Published in: | ACS macro letters 2021-09, Vol.10 (9), p.1151-1158 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173 |
---|---|
cites | cdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173 |
container_end_page | 1158 |
container_issue | 9 |
container_start_page | 1151 |
container_title | ACS macro letters |
container_volume | 10 |
creator | Sheung, Janet Y Achiriloaie, Daisy H Currie, Christopher Peddireddy, Karthik Xie, Aaron Simon-Parker, Jessalyn Lee, Gloria Rust, Michael J Das, Moumita Ross, Jennifer L Robertson-Anderson, Rae M |
description | The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity. |
doi_str_mv | 10.1021/acsmacrolett.1c00500 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664805872</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</originalsourceid><addsrcrecordid>eNp9UU1LAzEQDaJYqf4DkT162Zrv3b0IUusHVAQpHg1pOluju5uaZIX-eyOtUi_OZQbmvTfDewidEjwimJILbUKrjXcNxDgiBmOB8R46okSSnEjB9nfmAToJ4Q2nEpKUFT9EAyYEr3BJjtDLg4vO59fefkKXPUGIvjex97ZbZq7OxuvowjukM67Lxq5duWAjhGwKehGy6LJZ3-l5A9nMtpA_a7_-Jk4aHaI1Nq6P0UGtmwAn2z5Es5vJbHyXTx9v78dX01xzzGJOSAVQU865oYZyxhe8NJJRKYq6ZoKKNOl5BWVZlQnCpAQ-B6q1pAUmBRuiy43sqp-3sDDQRa8btfK2TS8pp636u-nsq1q6T1VRVhWCJIHzrYB3H31yQbU2GGga3YHrg6JS8hKLsqAJyjfQZH8IHurfMwSr73DUbjhqG06ine2--Ev6iSIB8AaQ6OrN9b5Lhv2v-QXha6CN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664805872</pqid></control><display><type>article</type><title>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Sheung, Janet Y ; Achiriloaie, Daisy H ; Currie, Christopher ; Peddireddy, Karthik ; Xie, Aaron ; Simon-Parker, Jessalyn ; Lee, Gloria ; Rust, Michael J ; Das, Moumita ; Ross, Jennifer L ; Robertson-Anderson, Rae M</creator><creatorcontrib>Sheung, Janet Y ; Achiriloaie, Daisy H ; Currie, Christopher ; Peddireddy, Karthik ; Xie, Aaron ; Simon-Parker, Jessalyn ; Lee, Gloria ; Rust, Michael J ; Das, Moumita ; Ross, Jennifer L ; Robertson-Anderson, Rae M</creatorcontrib><description>The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.1c00500</identifier><identifier>PMID: 35549081</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2021-09, Vol.10 (9), p.1151-1158</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</citedby><cites>FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</cites><orcidid>0000-0003-4282-5484 ; 0000-0003-4694-9740 ; 0000-0003-4475-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35549081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheung, Janet Y</creatorcontrib><creatorcontrib>Achiriloaie, Daisy H</creatorcontrib><creatorcontrib>Currie, Christopher</creatorcontrib><creatorcontrib>Peddireddy, Karthik</creatorcontrib><creatorcontrib>Xie, Aaron</creatorcontrib><creatorcontrib>Simon-Parker, Jessalyn</creatorcontrib><creatorcontrib>Lee, Gloria</creatorcontrib><creatorcontrib>Rust, Michael J</creatorcontrib><creatorcontrib>Das, Moumita</creatorcontrib><creatorcontrib>Ross, Jennifer L</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><title>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LAzEQDaJYqf4DkT162Zrv3b0IUusHVAQpHg1pOluju5uaZIX-eyOtUi_OZQbmvTfDewidEjwimJILbUKrjXcNxDgiBmOB8R46okSSnEjB9nfmAToJ4Q2nEpKUFT9EAyYEr3BJjtDLg4vO59fefkKXPUGIvjex97ZbZq7OxuvowjukM67Lxq5duWAjhGwKehGy6LJZ3-l5A9nMtpA_a7_-Jk4aHaI1Nq6P0UGtmwAn2z5Es5vJbHyXTx9v78dX01xzzGJOSAVQU865oYZyxhe8NJJRKYq6ZoKKNOl5BWVZlQnCpAQ-B6q1pAUmBRuiy43sqp-3sDDQRa8btfK2TS8pp636u-nsq1q6T1VRVhWCJIHzrYB3H31yQbU2GGga3YHrg6JS8hKLsqAJyjfQZH8IHurfMwSr73DUbjhqG06ine2--Ev6iSIB8AaQ6OrN9b5Lhv2v-QXha6CN</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Sheung, Janet Y</creator><creator>Achiriloaie, Daisy H</creator><creator>Currie, Christopher</creator><creator>Peddireddy, Karthik</creator><creator>Xie, Aaron</creator><creator>Simon-Parker, Jessalyn</creator><creator>Lee, Gloria</creator><creator>Rust, Michael J</creator><creator>Das, Moumita</creator><creator>Ross, Jennifer L</creator><creator>Robertson-Anderson, Rae M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4282-5484</orcidid><orcidid>https://orcid.org/0000-0003-4694-9740</orcidid><orcidid>https://orcid.org/0000-0003-4475-4667</orcidid></search><sort><creationdate>20210921</creationdate><title>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</title><author>Sheung, Janet Y ; Achiriloaie, Daisy H ; Currie, Christopher ; Peddireddy, Karthik ; Xie, Aaron ; Simon-Parker, Jessalyn ; Lee, Gloria ; Rust, Michael J ; Das, Moumita ; Ross, Jennifer L ; Robertson-Anderson, Rae M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sheung, Janet Y</creatorcontrib><creatorcontrib>Achiriloaie, Daisy H</creatorcontrib><creatorcontrib>Currie, Christopher</creatorcontrib><creatorcontrib>Peddireddy, Karthik</creatorcontrib><creatorcontrib>Xie, Aaron</creatorcontrib><creatorcontrib>Simon-Parker, Jessalyn</creatorcontrib><creatorcontrib>Lee, Gloria</creatorcontrib><creatorcontrib>Rust, Michael J</creatorcontrib><creatorcontrib>Das, Moumita</creatorcontrib><creatorcontrib>Ross, Jennifer L</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheung, Janet Y</au><au>Achiriloaie, Daisy H</au><au>Currie, Christopher</au><au>Peddireddy, Karthik</au><au>Xie, Aaron</au><au>Simon-Parker, Jessalyn</au><au>Lee, Gloria</au><au>Rust, Michael J</au><au>Das, Moumita</au><au>Ross, Jennifer L</au><au>Robertson-Anderson, Rae M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2021-09-21</date><risdate>2021</risdate><volume>10</volume><issue>9</issue><spage>1151</spage><epage>1158</epage><pages>1151-1158</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>The composite cytoskeleton, comprising interacting networks of semiflexible actin and rigid microtubules, generates forces and restructures by using motor proteins such as myosins to enable key processes including cell motility and mitosis. Yet, how motor-driven activity alters the mechanics of cytoskeleton composites remains an open challenge. Here, we perform optical tweezers microrheology and confocal imaging of composites with varying actin–tubulin molar percentages (25–75, 50–50, and 75–25), driven by light-activated myosin II motors, to show that motor activity increases the elastic plateau modulus by over 2 orders of magnitude by active restructuring of both actin and microtubules that persists for hours after motor activation has ceased. Nonlinear microrheology measurements show that motor-driven restructuring increases the force response and stiffness and suppresses actin bending. The 50–50 composite exhibits the most dramatic mechanical response to motor activity due to the synergistic effects of added stiffness from the microtubules and sufficient motor substrate for pronounced activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35549081</pmid><doi>10.1021/acsmacrolett.1c00500</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4282-5484</orcidid><orcidid>https://orcid.org/0000-0003-4694-9740</orcidid><orcidid>https://orcid.org/0000-0003-4475-4667</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-1653 |
ispartof | ACS macro letters, 2021-09, Vol.10 (9), p.1151-1158 |
issn | 2161-1653 2161-1653 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239751 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Motor-Driven Restructuring of Cytoskeleton Composites Leads to Tunable Time-Varying Elasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor-Driven%20Restructuring%20of%20Cytoskeleton%20Composites%20Leads%20to%20Tunable%20Time-Varying%20Elasticity&rft.jtitle=ACS%20macro%20letters&rft.au=Sheung,%20Janet%20Y&rft.date=2021-09-21&rft.volume=10&rft.issue=9&rft.spage=1151&rft.epage=1158&rft.pages=1151-1158&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.1c00500&rft_dat=%3Cproquest_pubme%3E2664805872%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a403t-119eef2444c2c2434d48c632657ff3525265ab9e88984c2366e4be2aa6270173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664805872&rft_id=info:pmid/35549081&rfr_iscdi=true |