Loading…

19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2β2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subuni...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2022-06, Vol.144 (25), p.11270-11282
Main Authors: Meyer, Andreas, Kehl, Annemarie, Cui, Chang, Reichardt, Fehmke A. K., Hecker, Fabian, Funk, Lisa-Marie, Ghosh, Manas K., Pan, Kuan-Ting, Urlaub, Henning, Tittmann, Kai, Stubbe, JoAnne, Bennati, Marina
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11282
container_issue 25
container_start_page 11270
container_title Journal of the American Chemical Society
container_volume 144
creator Meyer, Andreas
Kehl, Annemarie
Cui, Chang
Reichardt, Fehmke A. K.
Hecker, Fabian
Funk, Lisa-Marie
Ghosh, Manas K.
Pan, Kuan-Ting
Urlaub, Henning
Tittmann, Kai
Stubbe, JoAnne
Bennati, Marina
description Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2β2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(β) and Y731(α) across the α/β interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731‑α2, GDP (substrate) and TTP (allosteric effector), a Y356 • intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron–electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356 • and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356 •, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.
doi_str_mv 10.1021/jacs.2c02906
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9248007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672704890</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-f6131692e16e1dc33b6eb65e6a1e09eafc183d63928e032b24d13ebb881d4a053</originalsourceid><addsrcrecordid>eNpVUUFqHDEQFMEh3ji55QE6-jJrtTSjnbkEjL2bGEwCxjkLSdMTa5mVHEmztl-SdyQP8ZuiwQsmp67u6q6iKUI-AVsC43C21TYtuWW8Y_INWUDDWdUAl0dkwRjj1aqV4pi8T2lb2pq38I4ci0Y2vAOxIL-h29D1iDbH4Ktvkx1RR3oZJjMivcEUvPZ2RnvUY6JXPmPUNrvgqcH8gOgL14fH6rwM90hvn2JIzmOi2haUaL5D-vzn7Pnvy-2gi1oY6HpJbRgdvXEm-Nk1ZNfPPv1ks074gbwdiiF-PNQT8mOzvr34Wl1__3J1cX5daV7XuRokCJAdR5AIvRXCSDSyQakBWYd6sNCKXoqOt8gEN7zuQaAxbQt9rVkjTsjnF937yeywt-hz1KO6j26n45MK2qn_Ge_u1M-wVx2vW8ZWReD0IBDDrwlTVjuXLI6j9himpLhc8RWr2469rpbE1DZM0ZfPFDA156jmHNUhR_EPqt6Tlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672704890</pqid></control><display><type>article</type><title>19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Meyer, Andreas ; Kehl, Annemarie ; Cui, Chang ; Reichardt, Fehmke A. K. ; Hecker, Fabian ; Funk, Lisa-Marie ; Ghosh, Manas K. ; Pan, Kuan-Ting ; Urlaub, Henning ; Tittmann, Kai ; Stubbe, JoAnne ; Bennati, Marina</creator><creatorcontrib>Meyer, Andreas ; Kehl, Annemarie ; Cui, Chang ; Reichardt, Fehmke A. K. ; Hecker, Fabian ; Funk, Lisa-Marie ; Ghosh, Manas K. ; Pan, Kuan-Ting ; Urlaub, Henning ; Tittmann, Kai ; Stubbe, JoAnne ; Bennati, Marina</creatorcontrib><description>Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2β2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(β) and Y731(α) across the α/β interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731‑α2, GDP (substrate) and TTP (allosteric effector), a Y356 • intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron–electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356 • and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356 •, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c02906</identifier><identifier>PMID: 35652913</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-06, Vol.144 (25), p.11270-11282</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4709-7458 ; 0000-0001-7262-5497 ; 0000-0001-7891-7108 ; 0000-0002-6105-8252 ; 0000-0001-8076-4489 ; 0000-0001-6974-5324 ; 0000-0001-6784-7845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids></links><search><creatorcontrib>Meyer, Andreas</creatorcontrib><creatorcontrib>Kehl, Annemarie</creatorcontrib><creatorcontrib>Cui, Chang</creatorcontrib><creatorcontrib>Reichardt, Fehmke A. K.</creatorcontrib><creatorcontrib>Hecker, Fabian</creatorcontrib><creatorcontrib>Funk, Lisa-Marie</creatorcontrib><creatorcontrib>Ghosh, Manas K.</creatorcontrib><creatorcontrib>Pan, Kuan-Ting</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Tittmann, Kai</creatorcontrib><creatorcontrib>Stubbe, JoAnne</creatorcontrib><creatorcontrib>Bennati, Marina</creatorcontrib><title>19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2β2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(β) and Y731(α) across the α/β interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731‑α2, GDP (substrate) and TTP (allosteric effector), a Y356 • intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron–electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356 • and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356 •, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUUFqHDEQFMEh3ji55QE6-jJrtTSjnbkEjL2bGEwCxjkLSdMTa5mVHEmztl-SdyQP8ZuiwQsmp67u6q6iKUI-AVsC43C21TYtuWW8Y_INWUDDWdUAl0dkwRjj1aqV4pi8T2lb2pq38I4ci0Y2vAOxIL-h29D1iDbH4Ktvkx1RR3oZJjMivcEUvPZ2RnvUY6JXPmPUNrvgqcH8gOgL14fH6rwM90hvn2JIzmOi2haUaL5D-vzn7Pnvy-2gi1oY6HpJbRgdvXEm-Nk1ZNfPPv1ks074gbwdiiF-PNQT8mOzvr34Wl1__3J1cX5daV7XuRokCJAdR5AIvRXCSDSyQakBWYd6sNCKXoqOt8gEN7zuQaAxbQt9rVkjTsjnF937yeywt-hz1KO6j26n45MK2qn_Ge_u1M-wVx2vW8ZWReD0IBDDrwlTVjuXLI6j9himpLhc8RWr2469rpbE1DZM0ZfPFDA156jmHNUhR_EPqt6Tlg</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>Meyer, Andreas</creator><creator>Kehl, Annemarie</creator><creator>Cui, Chang</creator><creator>Reichardt, Fehmke A. K.</creator><creator>Hecker, Fabian</creator><creator>Funk, Lisa-Marie</creator><creator>Ghosh, Manas K.</creator><creator>Pan, Kuan-Ting</creator><creator>Urlaub, Henning</creator><creator>Tittmann, Kai</creator><creator>Stubbe, JoAnne</creator><creator>Bennati, Marina</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4709-7458</orcidid><orcidid>https://orcid.org/0000-0001-7262-5497</orcidid><orcidid>https://orcid.org/0000-0001-7891-7108</orcidid><orcidid>https://orcid.org/0000-0002-6105-8252</orcidid><orcidid>https://orcid.org/0000-0001-8076-4489</orcidid><orcidid>https://orcid.org/0000-0001-6974-5324</orcidid><orcidid>https://orcid.org/0000-0001-6784-7845</orcidid></search><sort><creationdate>20220629</creationdate><title>19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase</title><author>Meyer, Andreas ; Kehl, Annemarie ; Cui, Chang ; Reichardt, Fehmke A. K. ; Hecker, Fabian ; Funk, Lisa-Marie ; Ghosh, Manas K. ; Pan, Kuan-Ting ; Urlaub, Henning ; Tittmann, Kai ; Stubbe, JoAnne ; Bennati, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-f6131692e16e1dc33b6eb65e6a1e09eafc183d63928e032b24d13ebb881d4a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Andreas</creatorcontrib><creatorcontrib>Kehl, Annemarie</creatorcontrib><creatorcontrib>Cui, Chang</creatorcontrib><creatorcontrib>Reichardt, Fehmke A. K.</creatorcontrib><creatorcontrib>Hecker, Fabian</creatorcontrib><creatorcontrib>Funk, Lisa-Marie</creatorcontrib><creatorcontrib>Ghosh, Manas K.</creatorcontrib><creatorcontrib>Pan, Kuan-Ting</creatorcontrib><creatorcontrib>Urlaub, Henning</creatorcontrib><creatorcontrib>Tittmann, Kai</creatorcontrib><creatorcontrib>Stubbe, JoAnne</creatorcontrib><creatorcontrib>Bennati, Marina</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Andreas</au><au>Kehl, Annemarie</au><au>Cui, Chang</au><au>Reichardt, Fehmke A. K.</au><au>Hecker, Fabian</au><au>Funk, Lisa-Marie</au><au>Ghosh, Manas K.</au><au>Pan, Kuan-Ting</au><au>Urlaub, Henning</au><au>Tittmann, Kai</au><au>Stubbe, JoAnne</au><au>Bennati, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-06-29</date><risdate>2022</risdate><volume>144</volume><issue>25</issue><spage>11270</spage><epage>11282</epage><pages>11270-11282</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. Escherichia coli class Ia RNR is an α2β2 enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y356(β) and Y731(α) across the α/β interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731‑α2, GDP (substrate) and TTP (allosteric effector), a Y356 • intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron–electron double resonance spectroscopies. 94 GHz 19F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y356 • and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with 3,5-F2Y731 within the H-bond distance to Y356 •, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y356 and Y731. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.</abstract><pub>American Chemical Society</pub><pmid>35652913</pmid><doi>10.1021/jacs.2c02906</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4709-7458</orcidid><orcidid>https://orcid.org/0000-0001-7262-5497</orcidid><orcidid>https://orcid.org/0000-0001-7891-7108</orcidid><orcidid>https://orcid.org/0000-0002-6105-8252</orcidid><orcidid>https://orcid.org/0000-0001-8076-4489</orcidid><orcidid>https://orcid.org/0000-0001-6974-5324</orcidid><orcidid>https://orcid.org/0000-0001-6784-7845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-06, Vol.144 (25), p.11270-11282
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9248007
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title 19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=19F%20Electron-Nuclear%20Double%20Resonance%20Reveals%20Interaction%20between%20Redox-Active%20Tyrosines%20across%20the%20%CE%B1/%CE%B2%20Interface%20of%20E.%20coli%20Ribonucleotide%20Reductase&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Meyer,%20Andreas&rft.date=2022-06-29&rft.volume=144&rft.issue=25&rft.spage=11270&rft.epage=11282&rft.pages=11270-11282&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c02906&rft_dat=%3Cproquest_pubme%3E2672704890%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a244t-f6131692e16e1dc33b6eb65e6a1e09eafc183d63928e032b24d13ebb881d4a053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672704890&rft_id=info:pmid/35652913&rfr_iscdi=true