Loading…

Analysis and Prediction of Corporate Finance and Exchange Rate Correlation Based on Machine Learning Algorithms

Based on the risk management of exposure to foreign exchange assets and liabilities and the application of financial derivatives, this paper provides an in-depth analysis of the financial and exchange rate risks of foreign-funded enterprises. Therefore, a method of evaluating the financial performan...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience 2022-06, Vol.2022, p.1-9
Main Authors: Zhang, Ke, Wang, Xiaofei, Wang, Junjie, Wang, Sinan, Hui, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13
cites cdi_FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13
container_end_page 9
container_issue
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2022
creator Zhang, Ke
Wang, Xiaofei
Wang, Junjie
Wang, Sinan
Hui, Feng
description Based on the risk management of exposure to foreign exchange assets and liabilities and the application of financial derivatives, this paper provides an in-depth analysis of the financial and exchange rate risks of foreign-funded enterprises. Therefore, a method of evaluating the financial performance of listed financial enterprises based on principal component analysis and neural network model is proposed. First, principal components of alternative financial performance input-output indicators are extracted using principal component analysis. Subsequently, these principal components are used as input-output data for the DEA model to derive the relative validity evaluation results of the financial performance of individual financial enterprises and to provide a reference for decision making to improve the financial performance level of financial enterprises. Combined with the economic business data of the enterprises, an empirical test on exchange rate risk management is conducted and relevant suggestions are made on how foreign enterprises can reduce exchange rate risk losses. It has important theoretical value and practical significance for enterprise finance and exchange rate management.
doi_str_mv 10.1155/2022/2850604
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9249446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709009646</galeid><sourcerecordid>A709009646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13</originalsourceid><addsrcrecordid>eNp9kVuLFDEQhYMo7rr65g8I-CLouLl0OukXYXbYVWFEEX0ONUl1T5aeZEx61P33Zi4s6oOBkIL6cqo4h5DnnL3hXKlLwYS4FEaxljUPyDlvjZ4poeXD-7pVZ-RJKbeMKa2YeEzOpNJGccbOSZpHGO9KKBSip58z-uCmkCJNPV2kvE0ZJqQ3IUJ0eGCuf7k1xAHpl32nMhlHOHy5goKe1uIjuHWISJcIOYY40Pk4pBym9aY8JY96GAs-O70X5NvN9dfF-9ny07sPi_ly5holp5lXsp6VY9qDMlz13mPfrxxnqnNotGs5yqYDLU29znfOK9NIIzxrdee4vCBvj7rb3WqD3mGcMox2m8MG8p1NEOzfnRjWdkg_bCearmnaKvDyJJDT9x2WyW5CcTiOEDHtihVttVzyOrSiL_5Bb9MuV18PlDRMNd0f1AAj2hD7VOe6vaida9Yx1rWHsa-PlMuplIz9_cqc2X3edp-3PeVd8VdHvPrt4Wf4P_0b46SoKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683805493</pqid></control><display><type>article</type><title>Analysis and Prediction of Corporate Finance and Exchange Rate Correlation Based on Machine Learning Algorithms</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Zhang, Ke ; Wang, Xiaofei ; Wang, Junjie ; Wang, Sinan ; Hui, Feng</creator><contributor>Sun, Le ; Le Sun</contributor><creatorcontrib>Zhang, Ke ; Wang, Xiaofei ; Wang, Junjie ; Wang, Sinan ; Hui, Feng ; Sun, Le ; Le Sun</creatorcontrib><description>Based on the risk management of exposure to foreign exchange assets and liabilities and the application of financial derivatives, this paper provides an in-depth analysis of the financial and exchange rate risks of foreign-funded enterprises. Therefore, a method of evaluating the financial performance of listed financial enterprises based on principal component analysis and neural network model is proposed. First, principal components of alternative financial performance input-output indicators are extracted using principal component analysis. Subsequently, these principal components are used as input-output data for the DEA model to derive the relative validity evaluation results of the financial performance of individual financial enterprises and to provide a reference for decision making to improve the financial performance level of financial enterprises. Combined with the economic business data of the enterprises, an empirical test on exchange rate risk management is conducted and relevant suggestions are made on how foreign enterprises can reduce exchange rate risk losses. It has important theoretical value and practical significance for enterprise finance and exchange rate management.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/2850604</identifier><identifier>PMID: 35785100</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accountants ; Algorithms ; Business metrics ; Corporations ; Currency ; Data mining ; Debt restructuring ; Decision making ; Derivatives (Financial instruments) ; Efficiency ; Empirical analysis ; Finance ; Financial management ; Financial statements ; Foreign exchange ; Foreign exchange rates ; Internal accounting control ; International trade ; Machine learning ; Methods ; Neural networks ; Performance evaluation ; Principal components analysis ; Risk management ; Solvency</subject><ispartof>Computational intelligence and neuroscience, 2022-06, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Ke Zhang et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Ke Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Ke Zhang et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13</citedby><cites>FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13</cites><orcidid>0000-0003-1311-0041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2683805493/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2683805493?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,36992,44569,74873</link.rule.ids></links><search><contributor>Sun, Le</contributor><contributor>Le Sun</contributor><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Wang, Sinan</creatorcontrib><creatorcontrib>Hui, Feng</creatorcontrib><title>Analysis and Prediction of Corporate Finance and Exchange Rate Correlation Based on Machine Learning Algorithms</title><title>Computational intelligence and neuroscience</title><description>Based on the risk management of exposure to foreign exchange assets and liabilities and the application of financial derivatives, this paper provides an in-depth analysis of the financial and exchange rate risks of foreign-funded enterprises. Therefore, a method of evaluating the financial performance of listed financial enterprises based on principal component analysis and neural network model is proposed. First, principal components of alternative financial performance input-output indicators are extracted using principal component analysis. Subsequently, these principal components are used as input-output data for the DEA model to derive the relative validity evaluation results of the financial performance of individual financial enterprises and to provide a reference for decision making to improve the financial performance level of financial enterprises. Combined with the economic business data of the enterprises, an empirical test on exchange rate risk management is conducted and relevant suggestions are made on how foreign enterprises can reduce exchange rate risk losses. It has important theoretical value and practical significance for enterprise finance and exchange rate management.</description><subject>Accountants</subject><subject>Algorithms</subject><subject>Business metrics</subject><subject>Corporations</subject><subject>Currency</subject><subject>Data mining</subject><subject>Debt restructuring</subject><subject>Decision making</subject><subject>Derivatives (Financial instruments)</subject><subject>Efficiency</subject><subject>Empirical analysis</subject><subject>Finance</subject><subject>Financial management</subject><subject>Financial statements</subject><subject>Foreign exchange</subject><subject>Foreign exchange rates</subject><subject>Internal accounting control</subject><subject>International trade</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Principal components analysis</subject><subject>Risk management</subject><subject>Solvency</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kVuLFDEQhYMo7rr65g8I-CLouLl0OukXYXbYVWFEEX0ONUl1T5aeZEx61P33Zi4s6oOBkIL6cqo4h5DnnL3hXKlLwYS4FEaxljUPyDlvjZ4poeXD-7pVZ-RJKbeMKa2YeEzOpNJGccbOSZpHGO9KKBSip58z-uCmkCJNPV2kvE0ZJqQ3IUJ0eGCuf7k1xAHpl32nMhlHOHy5goKe1uIjuHWISJcIOYY40Pk4pBym9aY8JY96GAs-O70X5NvN9dfF-9ny07sPi_ly5holp5lXsp6VY9qDMlz13mPfrxxnqnNotGs5yqYDLU29znfOK9NIIzxrdee4vCBvj7rb3WqD3mGcMox2m8MG8p1NEOzfnRjWdkg_bCearmnaKvDyJJDT9x2WyW5CcTiOEDHtihVttVzyOrSiL_5Bb9MuV18PlDRMNd0f1AAj2hD7VOe6vaida9Yx1rWHsa-PlMuplIz9_cqc2X3edp-3PeVd8VdHvPrt4Wf4P_0b46SoKQ</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Zhang, Ke</creator><creator>Wang, Xiaofei</creator><creator>Wang, Junjie</creator><creator>Wang, Sinan</creator><creator>Hui, Feng</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1311-0041</orcidid></search><sort><creationdate>20220624</creationdate><title>Analysis and Prediction of Corporate Finance and Exchange Rate Correlation Based on Machine Learning Algorithms</title><author>Zhang, Ke ; Wang, Xiaofei ; Wang, Junjie ; Wang, Sinan ; Hui, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accountants</topic><topic>Algorithms</topic><topic>Business metrics</topic><topic>Corporations</topic><topic>Currency</topic><topic>Data mining</topic><topic>Debt restructuring</topic><topic>Decision making</topic><topic>Derivatives (Financial instruments)</topic><topic>Efficiency</topic><topic>Empirical analysis</topic><topic>Finance</topic><topic>Financial management</topic><topic>Financial statements</topic><topic>Foreign exchange</topic><topic>Foreign exchange rates</topic><topic>Internal accounting control</topic><topic>International trade</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Principal components analysis</topic><topic>Risk management</topic><topic>Solvency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Wang, Sinan</creatorcontrib><creatorcontrib>Hui, Feng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ke</au><au>Wang, Xiaofei</au><au>Wang, Junjie</au><au>Wang, Sinan</au><au>Hui, Feng</au><au>Sun, Le</au><au>Le Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Prediction of Corporate Finance and Exchange Rate Correlation Based on Machine Learning Algorithms</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2022-06-24</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Based on the risk management of exposure to foreign exchange assets and liabilities and the application of financial derivatives, this paper provides an in-depth analysis of the financial and exchange rate risks of foreign-funded enterprises. Therefore, a method of evaluating the financial performance of listed financial enterprises based on principal component analysis and neural network model is proposed. First, principal components of alternative financial performance input-output indicators are extracted using principal component analysis. Subsequently, these principal components are used as input-output data for the DEA model to derive the relative validity evaluation results of the financial performance of individual financial enterprises and to provide a reference for decision making to improve the financial performance level of financial enterprises. Combined with the economic business data of the enterprises, an empirical test on exchange rate risk management is conducted and relevant suggestions are made on how foreign enterprises can reduce exchange rate risk losses. It has important theoretical value and practical significance for enterprise finance and exchange rate management.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>35785100</pmid><doi>10.1155/2022/2850604</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1311-0041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-06, Vol.2022, p.1-9
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9249446
source Publicly Available Content Database; Wiley Open Access
subjects Accountants
Algorithms
Business metrics
Corporations
Currency
Data mining
Debt restructuring
Decision making
Derivatives (Financial instruments)
Efficiency
Empirical analysis
Finance
Financial management
Financial statements
Foreign exchange
Foreign exchange rates
Internal accounting control
International trade
Machine learning
Methods
Neural networks
Performance evaluation
Principal components analysis
Risk management
Solvency
title Analysis and Prediction of Corporate Finance and Exchange Rate Correlation Based on Machine Learning Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Prediction%20of%20Corporate%20Finance%20and%20Exchange%20Rate%20Correlation%20Based%20on%20Machine%20Learning%20Algorithms&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Zhang,%20Ke&rft.date=2022-06-24&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/2850604&rft_dat=%3Cgale_pubme%3EA709009646%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-d53333bc07da5815fddeffbc1059ce87c61e349a738a73cd9cd584382d0679c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683805493&rft_id=info:pmid/35785100&rft_galeid=A709009646&rfr_iscdi=true