Loading…

Malaria parasites release vesicle subpopulations with signatures of different destinations

Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum . The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐...

Full description

Saved in:
Bibliographic Details
Published in:EMBO reports 2022-07, Vol.23 (7), p.e54755-n/a
Main Authors: Abou Karam, Paula, Rosenhek‐Goldian, Irit, Ziv, Tamar, Ben Ami Pilo, Hila, Azuri, Ido, Rivkin, Anna, Kiper, Edo, Rotkopf, Ron, Cohen, Sidney R, Torrecilhas, Ana Claudia, Avinoam, Ori, Rojas, Alicia, Morandi, Mattia I, Regev‐Rudzki, Neta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13
cites cdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13
container_end_page n/a
container_issue 7
container_start_page e54755
container_title EMBO reports
container_volume 23
creator Abou Karam, Paula
Rosenhek‐Goldian, Irit
Ziv, Tamar
Ben Ami Pilo, Hila
Azuri, Ido
Rivkin, Anna
Kiper, Edo
Rotkopf, Ron
Cohen, Sidney R
Torrecilhas, Ana Claudia
Avinoam, Ori
Rojas, Alicia
Morandi, Mattia I
Regev‐Rudzki, Neta
description Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum . The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems. Synopsis Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets. Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation. Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits. Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset. The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions. Graphical Abstract Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.
doi_str_mv 10.15252/embr.202254755
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9253735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684380429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxUNR-qVrdzLgppvX5nNm4kLQ0qrQIoiF4ibcydx5TcmbTJOZlv73TTvPZxXE1b2Q3z05h0PIG0YPmeKKH-GqiYeccq5kpdQW2WWy1AvBqvrFeuecXe6QvZSuKaVKV_U22RGqlFzVapf8PAcP0UExQITkRkxFRI-QsLjF5KzHIk3NEIbJw-hCn4o7N14VyS17GKeY8dAVres6jNiPRYtpdP1MviIvO_AJX6_nPrk4Pflx_GVx9u3z1-OPZwurmFCLWuqW8xY7qjtpdSuaSjZlntC2lFkKqtNNWXHV0NI2VjLNsdZQV0ooK4GJffJh1h2mZoWtzT4ieDNEt4J4bwI48-dL767MMtwazZWohMoCB2uBGG6mnMCsXLLoPfQYpmR4_l0wzWiZ0Xd_oddhin2Ol6laippKrjN1NFM2hpQidhszjJqn3sxjb2bTW754-zzDhv9VVAbez8Cd83j_Pz1zcv7p-3N1Oh-nfNcvMf52_S9DD41Lt38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684380429</pqid></control><display><type>article</type><title>Malaria parasites release vesicle subpopulations with signatures of different destinations</title><source>PubMed Central (Open Access)</source><creator>Abou Karam, Paula ; Rosenhek‐Goldian, Irit ; Ziv, Tamar ; Ben Ami Pilo, Hila ; Azuri, Ido ; Rivkin, Anna ; Kiper, Edo ; Rotkopf, Ron ; Cohen, Sidney R ; Torrecilhas, Ana Claudia ; Avinoam, Ori ; Rojas, Alicia ; Morandi, Mattia I ; Regev‐Rudzki, Neta</creator><creatorcontrib>Abou Karam, Paula ; Rosenhek‐Goldian, Irit ; Ziv, Tamar ; Ben Ami Pilo, Hila ; Azuri, Ido ; Rivkin, Anna ; Kiper, Edo ; Rotkopf, Ron ; Cohen, Sidney R ; Torrecilhas, Ana Claudia ; Avinoam, Ori ; Rojas, Alicia ; Morandi, Mattia I ; Regev‐Rudzki, Neta</creatorcontrib><description>Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum . The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems. Synopsis Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets. Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation. Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits. Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset. The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions. Graphical Abstract Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202254755</identifier><identifier>PMID: 35642585</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>AFM ; asymmetric flow field‐flow fractionation ; Asymmetry ; Atomic force microscopes ; Atomic force microscopy ; Cell interactions ; Cell membranes ; Complement system ; EMBO20 ; EMBO23 ; EMBO37 ; Endosomes ; Erythrocytes ; Extracellular vesicles ; Fractionation ; Host systems ; Lipids ; Machine learning ; Malaria ; Mechanical properties ; Membrane fusion ; Membranes ; Parasites ; Parasitic diseases ; Plasmodium falciparum ; Proteasomes ; Proteins ; Subpopulations ; Vector-borne diseases</subject><ispartof>EMBO reports, 2022-07, Vol.23 (7), p.e54755-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</citedby><cites>FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</cites><orcidid>0000-0003-4299-7454 ; 0000-0003-3543-168X ; 0000-0001-5724-2199 ; 0000-0001-7252-0193 ; 0000-0002-4878-5359 ; 0000-0003-4255-3351 ; 0000-0003-2007-7198 ; 0000-0002-2891-1514 ; 0000-0001-8467-4552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253735/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253735/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35642585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abou Karam, Paula</creatorcontrib><creatorcontrib>Rosenhek‐Goldian, Irit</creatorcontrib><creatorcontrib>Ziv, Tamar</creatorcontrib><creatorcontrib>Ben Ami Pilo, Hila</creatorcontrib><creatorcontrib>Azuri, Ido</creatorcontrib><creatorcontrib>Rivkin, Anna</creatorcontrib><creatorcontrib>Kiper, Edo</creatorcontrib><creatorcontrib>Rotkopf, Ron</creatorcontrib><creatorcontrib>Cohen, Sidney R</creatorcontrib><creatorcontrib>Torrecilhas, Ana Claudia</creatorcontrib><creatorcontrib>Avinoam, Ori</creatorcontrib><creatorcontrib>Rojas, Alicia</creatorcontrib><creatorcontrib>Morandi, Mattia I</creatorcontrib><creatorcontrib>Regev‐Rudzki, Neta</creatorcontrib><title>Malaria parasites release vesicle subpopulations with signatures of different destinations</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum . The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems. Synopsis Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets. Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation. Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits. Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset. The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions. Graphical Abstract Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.</description><subject>AFM</subject><subject>asymmetric flow field‐flow fractionation</subject><subject>Asymmetry</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Cell interactions</subject><subject>Cell membranes</subject><subject>Complement system</subject><subject>EMBO20</subject><subject>EMBO23</subject><subject>EMBO37</subject><subject>Endosomes</subject><subject>Erythrocytes</subject><subject>Extracellular vesicles</subject><subject>Fractionation</subject><subject>Host systems</subject><subject>Lipids</subject><subject>Machine learning</subject><subject>Malaria</subject><subject>Mechanical properties</subject><subject>Membrane fusion</subject><subject>Membranes</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Plasmodium falciparum</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Subpopulations</subject><subject>Vector-borne diseases</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1rFTEUxUNR-qVrdzLgppvX5nNm4kLQ0qrQIoiF4ibcydx5TcmbTJOZlv73TTvPZxXE1b2Q3z05h0PIG0YPmeKKH-GqiYeccq5kpdQW2WWy1AvBqvrFeuecXe6QvZSuKaVKV_U22RGqlFzVapf8PAcP0UExQITkRkxFRI-QsLjF5KzHIk3NEIbJw-hCn4o7N14VyS17GKeY8dAVres6jNiPRYtpdP1MviIvO_AJX6_nPrk4Pflx_GVx9u3z1-OPZwurmFCLWuqW8xY7qjtpdSuaSjZlntC2lFkKqtNNWXHV0NI2VjLNsdZQV0ooK4GJffJh1h2mZoWtzT4ieDNEt4J4bwI48-dL767MMtwazZWohMoCB2uBGG6mnMCsXLLoPfQYpmR4_l0wzWiZ0Xd_oddhin2Ol6laippKrjN1NFM2hpQidhszjJqn3sxjb2bTW754-zzDhv9VVAbez8Cd83j_Pz1zcv7p-3N1Oh-nfNcvMf52_S9DD41Lt38</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Abou Karam, Paula</creator><creator>Rosenhek‐Goldian, Irit</creator><creator>Ziv, Tamar</creator><creator>Ben Ami Pilo, Hila</creator><creator>Azuri, Ido</creator><creator>Rivkin, Anna</creator><creator>Kiper, Edo</creator><creator>Rotkopf, Ron</creator><creator>Cohen, Sidney R</creator><creator>Torrecilhas, Ana Claudia</creator><creator>Avinoam, Ori</creator><creator>Rojas, Alicia</creator><creator>Morandi, Mattia I</creator><creator>Regev‐Rudzki, Neta</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4299-7454</orcidid><orcidid>https://orcid.org/0000-0003-3543-168X</orcidid><orcidid>https://orcid.org/0000-0001-5724-2199</orcidid><orcidid>https://orcid.org/0000-0001-7252-0193</orcidid><orcidid>https://orcid.org/0000-0002-4878-5359</orcidid><orcidid>https://orcid.org/0000-0003-4255-3351</orcidid><orcidid>https://orcid.org/0000-0003-2007-7198</orcidid><orcidid>https://orcid.org/0000-0002-2891-1514</orcidid><orcidid>https://orcid.org/0000-0001-8467-4552</orcidid></search><sort><creationdate>20220705</creationdate><title>Malaria parasites release vesicle subpopulations with signatures of different destinations</title><author>Abou Karam, Paula ; Rosenhek‐Goldian, Irit ; Ziv, Tamar ; Ben Ami Pilo, Hila ; Azuri, Ido ; Rivkin, Anna ; Kiper, Edo ; Rotkopf, Ron ; Cohen, Sidney R ; Torrecilhas, Ana Claudia ; Avinoam, Ori ; Rojas, Alicia ; Morandi, Mattia I ; Regev‐Rudzki, Neta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AFM</topic><topic>asymmetric flow field‐flow fractionation</topic><topic>Asymmetry</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Cell interactions</topic><topic>Cell membranes</topic><topic>Complement system</topic><topic>EMBO20</topic><topic>EMBO23</topic><topic>EMBO37</topic><topic>Endosomes</topic><topic>Erythrocytes</topic><topic>Extracellular vesicles</topic><topic>Fractionation</topic><topic>Host systems</topic><topic>Lipids</topic><topic>Machine learning</topic><topic>Malaria</topic><topic>Mechanical properties</topic><topic>Membrane fusion</topic><topic>Membranes</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Plasmodium falciparum</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Subpopulations</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abou Karam, Paula</creatorcontrib><creatorcontrib>Rosenhek‐Goldian, Irit</creatorcontrib><creatorcontrib>Ziv, Tamar</creatorcontrib><creatorcontrib>Ben Ami Pilo, Hila</creatorcontrib><creatorcontrib>Azuri, Ido</creatorcontrib><creatorcontrib>Rivkin, Anna</creatorcontrib><creatorcontrib>Kiper, Edo</creatorcontrib><creatorcontrib>Rotkopf, Ron</creatorcontrib><creatorcontrib>Cohen, Sidney R</creatorcontrib><creatorcontrib>Torrecilhas, Ana Claudia</creatorcontrib><creatorcontrib>Avinoam, Ori</creatorcontrib><creatorcontrib>Rojas, Alicia</creatorcontrib><creatorcontrib>Morandi, Mattia I</creatorcontrib><creatorcontrib>Regev‐Rudzki, Neta</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abou Karam, Paula</au><au>Rosenhek‐Goldian, Irit</au><au>Ziv, Tamar</au><au>Ben Ami Pilo, Hila</au><au>Azuri, Ido</au><au>Rivkin, Anna</au><au>Kiper, Edo</au><au>Rotkopf, Ron</au><au>Cohen, Sidney R</au><au>Torrecilhas, Ana Claudia</au><au>Avinoam, Ori</au><au>Rojas, Alicia</au><au>Morandi, Mattia I</au><au>Regev‐Rudzki, Neta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malaria parasites release vesicle subpopulations with signatures of different destinations</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2022-07-05</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>e54755</spage><epage>n/a</epage><pages>e54755-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum . The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems. Synopsis Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets. Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation. Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits. Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset. The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions. Graphical Abstract Plasmodium falciparum invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35642585</pmid><doi>10.15252/embr.202254755</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4299-7454</orcidid><orcidid>https://orcid.org/0000-0003-3543-168X</orcidid><orcidid>https://orcid.org/0000-0001-5724-2199</orcidid><orcidid>https://orcid.org/0000-0001-7252-0193</orcidid><orcidid>https://orcid.org/0000-0002-4878-5359</orcidid><orcidid>https://orcid.org/0000-0003-4255-3351</orcidid><orcidid>https://orcid.org/0000-0003-2007-7198</orcidid><orcidid>https://orcid.org/0000-0002-2891-1514</orcidid><orcidid>https://orcid.org/0000-0001-8467-4552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2022-07, Vol.23 (7), p.e54755-n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9253735
source PubMed Central (Open Access)
subjects AFM
asymmetric flow field‐flow fractionation
Asymmetry
Atomic force microscopes
Atomic force microscopy
Cell interactions
Cell membranes
Complement system
EMBO20
EMBO23
EMBO37
Endosomes
Erythrocytes
Extracellular vesicles
Fractionation
Host systems
Lipids
Machine learning
Malaria
Mechanical properties
Membrane fusion
Membranes
Parasites
Parasitic diseases
Plasmodium falciparum
Proteasomes
Proteins
Subpopulations
Vector-borne diseases
title Malaria parasites release vesicle subpopulations with signatures of different destinations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malaria%20parasites%20release%20vesicle%20subpopulations%20with%20signatures%20of%20different%20destinations&rft.jtitle=EMBO%20reports&rft.au=Abou%20Karam,%20Paula&rft.date=2022-07-05&rft.volume=23&rft.issue=7&rft.spage=e54755&rft.epage=n/a&rft.pages=e54755-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202254755&rft_dat=%3Cproquest_pubme%3E2684380429%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2684380429&rft_id=info:pmid/35642585&rfr_iscdi=true