Loading…
Malaria parasites release vesicle subpopulations with signatures of different destinations
Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum . The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐...
Saved in:
Published in: | EMBO reports 2022-07, Vol.23 (7), p.e54755-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | e54755 |
container_title | EMBO reports |
container_volume | 23 |
creator | Abou Karam, Paula Rosenhek‐Goldian, Irit Ziv, Tamar Ben Ami Pilo, Hila Azuri, Ido Rivkin, Anna Kiper, Edo Rotkopf, Ron Cohen, Sidney R Torrecilhas, Ana Claudia Avinoam, Ori Rojas, Alicia Morandi, Mattia I Regev‐Rudzki, Neta |
description | Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite
Plasmodium falciparum
. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Synopsis
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.
Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation.
Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits.
Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset.
The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions.
Graphical Abstract
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets. |
doi_str_mv | 10.15252/embr.202254755 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9253735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684380429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</originalsourceid><addsrcrecordid>eNqFkc1rFTEUxUNR-qVrdzLgppvX5nNm4kLQ0qrQIoiF4ibcydx5TcmbTJOZlv73TTvPZxXE1b2Q3z05h0PIG0YPmeKKH-GqiYeccq5kpdQW2WWy1AvBqvrFeuecXe6QvZSuKaVKV_U22RGqlFzVapf8PAcP0UExQITkRkxFRI-QsLjF5KzHIk3NEIbJw-hCn4o7N14VyS17GKeY8dAVres6jNiPRYtpdP1MviIvO_AJX6_nPrk4Pflx_GVx9u3z1-OPZwurmFCLWuqW8xY7qjtpdSuaSjZlntC2lFkKqtNNWXHV0NI2VjLNsdZQV0ooK4GJffJh1h2mZoWtzT4ieDNEt4J4bwI48-dL767MMtwazZWohMoCB2uBGG6mnMCsXLLoPfQYpmR4_l0wzWiZ0Xd_oddhin2Ol6laippKrjN1NFM2hpQidhszjJqn3sxjb2bTW754-zzDhv9VVAbez8Cd83j_Pz1zcv7p-3N1Oh-nfNcvMf52_S9DD41Lt38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684380429</pqid></control><display><type>article</type><title>Malaria parasites release vesicle subpopulations with signatures of different destinations</title><source>PubMed Central (Open Access)</source><creator>Abou Karam, Paula ; Rosenhek‐Goldian, Irit ; Ziv, Tamar ; Ben Ami Pilo, Hila ; Azuri, Ido ; Rivkin, Anna ; Kiper, Edo ; Rotkopf, Ron ; Cohen, Sidney R ; Torrecilhas, Ana Claudia ; Avinoam, Ori ; Rojas, Alicia ; Morandi, Mattia I ; Regev‐Rudzki, Neta</creator><creatorcontrib>Abou Karam, Paula ; Rosenhek‐Goldian, Irit ; Ziv, Tamar ; Ben Ami Pilo, Hila ; Azuri, Ido ; Rivkin, Anna ; Kiper, Edo ; Rotkopf, Ron ; Cohen, Sidney R ; Torrecilhas, Ana Claudia ; Avinoam, Ori ; Rojas, Alicia ; Morandi, Mattia I ; Regev‐Rudzki, Neta</creatorcontrib><description>Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite
Plasmodium falciparum
. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Synopsis
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.
Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation.
Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits.
Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset.
The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions.
Graphical Abstract
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202254755</identifier><identifier>PMID: 35642585</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>AFM ; asymmetric flow field‐flow fractionation ; Asymmetry ; Atomic force microscopes ; Atomic force microscopy ; Cell interactions ; Cell membranes ; Complement system ; EMBO20 ; EMBO23 ; EMBO37 ; Endosomes ; Erythrocytes ; Extracellular vesicles ; Fractionation ; Host systems ; Lipids ; Machine learning ; Malaria ; Mechanical properties ; Membrane fusion ; Membranes ; Parasites ; Parasitic diseases ; Plasmodium falciparum ; Proteasomes ; Proteins ; Subpopulations ; Vector-borne diseases</subject><ispartof>EMBO reports, 2022-07, Vol.23 (7), p.e54755-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</citedby><cites>FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</cites><orcidid>0000-0003-4299-7454 ; 0000-0003-3543-168X ; 0000-0001-5724-2199 ; 0000-0001-7252-0193 ; 0000-0002-4878-5359 ; 0000-0003-4255-3351 ; 0000-0003-2007-7198 ; 0000-0002-2891-1514 ; 0000-0001-8467-4552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253735/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253735/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35642585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abou Karam, Paula</creatorcontrib><creatorcontrib>Rosenhek‐Goldian, Irit</creatorcontrib><creatorcontrib>Ziv, Tamar</creatorcontrib><creatorcontrib>Ben Ami Pilo, Hila</creatorcontrib><creatorcontrib>Azuri, Ido</creatorcontrib><creatorcontrib>Rivkin, Anna</creatorcontrib><creatorcontrib>Kiper, Edo</creatorcontrib><creatorcontrib>Rotkopf, Ron</creatorcontrib><creatorcontrib>Cohen, Sidney R</creatorcontrib><creatorcontrib>Torrecilhas, Ana Claudia</creatorcontrib><creatorcontrib>Avinoam, Ori</creatorcontrib><creatorcontrib>Rojas, Alicia</creatorcontrib><creatorcontrib>Morandi, Mattia I</creatorcontrib><creatorcontrib>Regev‐Rudzki, Neta</creatorcontrib><title>Malaria parasites release vesicle subpopulations with signatures of different destinations</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite
Plasmodium falciparum
. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Synopsis
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.
Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation.
Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits.
Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset.
The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions.
Graphical Abstract
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.</description><subject>AFM</subject><subject>asymmetric flow field‐flow fractionation</subject><subject>Asymmetry</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Cell interactions</subject><subject>Cell membranes</subject><subject>Complement system</subject><subject>EMBO20</subject><subject>EMBO23</subject><subject>EMBO37</subject><subject>Endosomes</subject><subject>Erythrocytes</subject><subject>Extracellular vesicles</subject><subject>Fractionation</subject><subject>Host systems</subject><subject>Lipids</subject><subject>Machine learning</subject><subject>Malaria</subject><subject>Mechanical properties</subject><subject>Membrane fusion</subject><subject>Membranes</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Plasmodium falciparum</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Subpopulations</subject><subject>Vector-borne diseases</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1rFTEUxUNR-qVrdzLgppvX5nNm4kLQ0qrQIoiF4ibcydx5TcmbTJOZlv73TTvPZxXE1b2Q3z05h0PIG0YPmeKKH-GqiYeccq5kpdQW2WWy1AvBqvrFeuecXe6QvZSuKaVKV_U22RGqlFzVapf8PAcP0UExQITkRkxFRI-QsLjF5KzHIk3NEIbJw-hCn4o7N14VyS17GKeY8dAVres6jNiPRYtpdP1MviIvO_AJX6_nPrk4Pflx_GVx9u3z1-OPZwurmFCLWuqW8xY7qjtpdSuaSjZlntC2lFkKqtNNWXHV0NI2VjLNsdZQV0ooK4GJffJh1h2mZoWtzT4ieDNEt4J4bwI48-dL767MMtwazZWohMoCB2uBGG6mnMCsXLLoPfQYpmR4_l0wzWiZ0Xd_oddhin2Ol6laippKrjN1NFM2hpQidhszjJqn3sxjb2bTW754-zzDhv9VVAbez8Cd83j_Pz1zcv7p-3N1Oh-nfNcvMf52_S9DD41Lt38</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Abou Karam, Paula</creator><creator>Rosenhek‐Goldian, Irit</creator><creator>Ziv, Tamar</creator><creator>Ben Ami Pilo, Hila</creator><creator>Azuri, Ido</creator><creator>Rivkin, Anna</creator><creator>Kiper, Edo</creator><creator>Rotkopf, Ron</creator><creator>Cohen, Sidney R</creator><creator>Torrecilhas, Ana Claudia</creator><creator>Avinoam, Ori</creator><creator>Rojas, Alicia</creator><creator>Morandi, Mattia I</creator><creator>Regev‐Rudzki, Neta</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4299-7454</orcidid><orcidid>https://orcid.org/0000-0003-3543-168X</orcidid><orcidid>https://orcid.org/0000-0001-5724-2199</orcidid><orcidid>https://orcid.org/0000-0001-7252-0193</orcidid><orcidid>https://orcid.org/0000-0002-4878-5359</orcidid><orcidid>https://orcid.org/0000-0003-4255-3351</orcidid><orcidid>https://orcid.org/0000-0003-2007-7198</orcidid><orcidid>https://orcid.org/0000-0002-2891-1514</orcidid><orcidid>https://orcid.org/0000-0001-8467-4552</orcidid></search><sort><creationdate>20220705</creationdate><title>Malaria parasites release vesicle subpopulations with signatures of different destinations</title><author>Abou Karam, Paula ; Rosenhek‐Goldian, Irit ; Ziv, Tamar ; Ben Ami Pilo, Hila ; Azuri, Ido ; Rivkin, Anna ; Kiper, Edo ; Rotkopf, Ron ; Cohen, Sidney R ; Torrecilhas, Ana Claudia ; Avinoam, Ori ; Rojas, Alicia ; Morandi, Mattia I ; Regev‐Rudzki, Neta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AFM</topic><topic>asymmetric flow field‐flow fractionation</topic><topic>Asymmetry</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Cell interactions</topic><topic>Cell membranes</topic><topic>Complement system</topic><topic>EMBO20</topic><topic>EMBO23</topic><topic>EMBO37</topic><topic>Endosomes</topic><topic>Erythrocytes</topic><topic>Extracellular vesicles</topic><topic>Fractionation</topic><topic>Host systems</topic><topic>Lipids</topic><topic>Machine learning</topic><topic>Malaria</topic><topic>Mechanical properties</topic><topic>Membrane fusion</topic><topic>Membranes</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Plasmodium falciparum</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Subpopulations</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abou Karam, Paula</creatorcontrib><creatorcontrib>Rosenhek‐Goldian, Irit</creatorcontrib><creatorcontrib>Ziv, Tamar</creatorcontrib><creatorcontrib>Ben Ami Pilo, Hila</creatorcontrib><creatorcontrib>Azuri, Ido</creatorcontrib><creatorcontrib>Rivkin, Anna</creatorcontrib><creatorcontrib>Kiper, Edo</creatorcontrib><creatorcontrib>Rotkopf, Ron</creatorcontrib><creatorcontrib>Cohen, Sidney R</creatorcontrib><creatorcontrib>Torrecilhas, Ana Claudia</creatorcontrib><creatorcontrib>Avinoam, Ori</creatorcontrib><creatorcontrib>Rojas, Alicia</creatorcontrib><creatorcontrib>Morandi, Mattia I</creatorcontrib><creatorcontrib>Regev‐Rudzki, Neta</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abou Karam, Paula</au><au>Rosenhek‐Goldian, Irit</au><au>Ziv, Tamar</au><au>Ben Ami Pilo, Hila</au><au>Azuri, Ido</au><au>Rivkin, Anna</au><au>Kiper, Edo</au><au>Rotkopf, Ron</au><au>Cohen, Sidney R</au><au>Torrecilhas, Ana Claudia</au><au>Avinoam, Ori</au><au>Rojas, Alicia</au><au>Morandi, Mattia I</au><au>Regev‐Rudzki, Neta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malaria parasites release vesicle subpopulations with signatures of different destinations</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2022-07-05</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>e54755</spage><epage>n/a</epage><pages>e54755-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Malaria is the most serious mosquito‐borne parasitic disease, caused mainly by the intracellular parasite
Plasmodium falciparum
. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub‐populations. Seeking to identify EV subpopulations, we subject malaria‐derived EVs to size‐separation analysis, using asymmetric flow field‐flow fractionation. Multi‐technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement‐system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine‐learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Synopsis
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.
Two distinct subsets of malaria‐derived EVs with different sizes are identified using asymmetric flow field‐flow fractionation.
Small EVs are rich in complement system proteins, whereas large EVs contain 20S proteasome subunits.
Small EVs are more efficient in fusing under endosomal conditions as compared to the large subset.
The EV subpopulations possess distinct membrane mechanical properties, suggesting different lipid compositions.
Graphical Abstract
Plasmodium falciparum
invades human red blood cells and releases two extracellular vesicle subsets secreted by infected cells. These EV subpopulations harbor different protein cargo and have specific mechanical membrane properties, suggesting distinct host cell targets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35642585</pmid><doi>10.15252/embr.202254755</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4299-7454</orcidid><orcidid>https://orcid.org/0000-0003-3543-168X</orcidid><orcidid>https://orcid.org/0000-0001-5724-2199</orcidid><orcidid>https://orcid.org/0000-0001-7252-0193</orcidid><orcidid>https://orcid.org/0000-0002-4878-5359</orcidid><orcidid>https://orcid.org/0000-0003-4255-3351</orcidid><orcidid>https://orcid.org/0000-0003-2007-7198</orcidid><orcidid>https://orcid.org/0000-0002-2891-1514</orcidid><orcidid>https://orcid.org/0000-0001-8467-4552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2022-07, Vol.23 (7), p.e54755-n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9253735 |
source | PubMed Central (Open Access) |
subjects | AFM asymmetric flow field‐flow fractionation Asymmetry Atomic force microscopes Atomic force microscopy Cell interactions Cell membranes Complement system EMBO20 EMBO23 EMBO37 Endosomes Erythrocytes Extracellular vesicles Fractionation Host systems Lipids Machine learning Malaria Mechanical properties Membrane fusion Membranes Parasites Parasitic diseases Plasmodium falciparum Proteasomes Proteins Subpopulations Vector-borne diseases |
title | Malaria parasites release vesicle subpopulations with signatures of different destinations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malaria%20parasites%20release%20vesicle%20subpopulations%20with%20signatures%20of%20different%20destinations&rft.jtitle=EMBO%20reports&rft.au=Abou%20Karam,%20Paula&rft.date=2022-07-05&rft.volume=23&rft.issue=7&rft.spage=e54755&rft.epage=n/a&rft.pages=e54755-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202254755&rft_dat=%3Cproquest_pubme%3E2684380429%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5135-849d22def09f4c9d3b74b69d3add01c0a5f9b6725b06cbc4192e89a87535c4a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2684380429&rft_id=info:pmid/35642585&rfr_iscdi=true |