Loading…

In Revision THA, Is the Re-revision Risk for Dislocation and Aseptic Causes Greater in Dual-mobility Constructs or Large Femoral Head Bearings? A Study from the Australian Orthopaedic Association National Joint Replacement Registry

Dislocation is one of the most common causes of a re-revision after a revision THA. Dual-mobility constructs and large femoral head bearings (≥ 36 mm) are known options for mitigating this risk. However, it is unknown which of these choices is better for reducing the risk of dislocation and all-caus...

Full description

Saved in:
Bibliographic Details
Published in:Clinical orthopaedics and related research 2022-06, Vol.480 (6), p.1091-1101
Main Authors: Hoskins, Wayne, Rainbird, Sophia, Dyer, Chelsea, Graves, Stephen E., Bingham, Roger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dislocation is one of the most common causes of a re-revision after a revision THA. Dual-mobility constructs and large femoral head bearings (≥ 36 mm) are known options for mitigating this risk. However, it is unknown which of these choices is better for reducing the risk of dislocation and all-cause re-revision surgery. It is also unknown whether there is a difference between dual-mobility constructs and large femoral head bearings according to the size of the acetabular component. We used data from a large national registry to ask: In patients undergoing revision THA for aseptic causes after a primary THA performed for osteoarthritis, (1) Does the proportion of re-revision surgery for prosthesis dislocation differ between revision THAs performed with dual-mobility constructs and those performed with large femoral head bearings? (2) Does the proportion of re-revision surgery for all aseptic causes differ between revision THAs performed with dual-mobility constructs and those performed with large femoral head bearings? (3) Is there a difference when the results are stratified by acetabular component size? Data from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) were analyzed for 1295 first-revision THAs for aseptic causes after a primary THA performed for osteoarthritis. The study period was from January 2008-when the first dual-mobility prosthesis was recorded-to December 2019. There were 502 dual-mobility constructs and 793 large femoral head bearings. There was a larger percentage of women in the dual-mobility construct group (67% [334 of 502]) compared with the large femoral head bearing group (51% [402 of 793]), but this was adjusted for in the statistical analysis. Patient ages were similar for the dual-mobility construct group (67 ± 11 years) and the large femoral head group (65 ± 12 years). American Society of Anesthesiologists (ASA) class and BMI distributions were similar. The mean follow-up was shorter for dual-mobility constructs at 2 ± 1.8 years compared with 4 ± 2.9 years for large femoral head bearings. The cumulative percent revision (CPR) was determined for a diagnosis of prosthesis dislocation as well as for all aseptic causes (excluding infection). Procedures using metal-on-metal bearings were excluded. The time to the re-revision was described using Kaplan-Meier estimates of survivorship, with right censoring for death or database closure at the time of analysis. The unadjusted CPR was estimated eac
ISSN:0009-921X
1528-1132
DOI:10.1097/CORR.0000000000002085