Loading…

Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?

The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2022-07, Vol.14 (13), p.3253
Main Author: Brutovský, Branislav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3
cites cdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3
container_end_page
container_issue 13
container_start_page 3253
container_title Cancers
container_volume 14
creator Brutovský, Branislav
description The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.
doi_str_mv 10.3390/cancers14133253
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9264996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685969326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoVmrPXhe8eKlNMptk48EPllqFgofqOaTZpN2y3dRkt-C_d2uLaOcyA_PwMC-D0BXBtwASj4yujQ2RpASAMjhBFxQLOuRcpqd_5h4axLjCXQEQwcU56gHLMMOUXaDHmdGVjYl3Sf6jS8ZbX7VN6eu7ZGYrV8ZlMrG1X9vEhyT3fmODbsp6keS2quLDJTpzuop2cOh99PE8fs9fhtO3yWv-NB0aoFkzpMJhwVzBJJ2TTEtsDBbAgHDHBOkiuIwWBkDMC5myDCiYQgAuuAMhU6yhj-733k07X9vC2LoJulKbUK51-FJel-r_pi6XauG3SlKeSsk7wc1BEPxna2Oj1mU0XQZdW99GRXkmBBFMZB16fYSufBvqLt6OYpJLoDvhaE-Z4GMM1v0eQ7DaPUgdPQi-AaMWgWY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685969326</pqid></control><display><type>article</type><title>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Brutovský, Branislav</creator><creatorcontrib>Brutovský, Branislav</creatorcontrib><description>The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14133253</identifier><identifier>PMID: 35805025</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Apoptosis ; Biology ; Cancer ; Cloning ; DNA methylation ; DNA repair ; Epigenetics ; Etiology ; Evolution ; Gene expression ; Genetic algorithms ; Genomes ; Genomic instability ; Genotype &amp; phenotype ; Microenvironments ; Mutation ; Optimization techniques ; Phenotypic plasticity ; Review ; Reviews ; Tumors</subject><ispartof>Cancers, 2022-07, Vol.14 (13), p.3253</ispartof><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the author. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</citedby><cites>FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</cites><orcidid>0000-0003-3454-3946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2685969326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2685969326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Brutovský, Branislav</creatorcontrib><title>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</title><title>Cancers</title><description>The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.</description><subject>Apoptosis</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cloning</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>Epigenetics</subject><subject>Etiology</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Genotype &amp; phenotype</subject><subject>Microenvironments</subject><subject>Mutation</subject><subject>Optimization techniques</subject><subject>Phenotypic plasticity</subject><subject>Review</subject><subject>Reviews</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LAzEQhoMoVmrPXhe8eKlNMptk48EPllqFgofqOaTZpN2y3dRkt-C_d2uLaOcyA_PwMC-D0BXBtwASj4yujQ2RpASAMjhBFxQLOuRcpqd_5h4axLjCXQEQwcU56gHLMMOUXaDHmdGVjYl3Sf6jS8ZbX7VN6eu7ZGYrV8ZlMrG1X9vEhyT3fmODbsp6keS2quLDJTpzuop2cOh99PE8fs9fhtO3yWv-NB0aoFkzpMJhwVzBJJ2TTEtsDBbAgHDHBOkiuIwWBkDMC5myDCiYQgAuuAMhU6yhj-733k07X9vC2LoJulKbUK51-FJel-r_pi6XauG3SlKeSsk7wc1BEPxna2Oj1mU0XQZdW99GRXkmBBFMZB16fYSufBvqLt6OYpJLoDvhaE-Z4GMM1v0eQ7DaPUgdPQi-AaMWgWY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Brutovský, Branislav</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3454-3946</orcidid></search><sort><creationdate>20220701</creationdate><title>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</title><author>Brutovský, Branislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apoptosis</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cloning</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>Epigenetics</topic><topic>Etiology</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Genotype &amp; phenotype</topic><topic>Microenvironments</topic><topic>Mutation</topic><topic>Optimization techniques</topic><topic>Phenotypic plasticity</topic><topic>Review</topic><topic>Reviews</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brutovský, Branislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brutovský, Branislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</atitle><jtitle>Cancers</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>13</issue><spage>3253</spage><pages>3253-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35805025</pmid><doi>10.3390/cancers14133253</doi><orcidid>https://orcid.org/0000-0003-3454-3946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2022-07, Vol.14 (13), p.3253
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9264996
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Apoptosis
Biology
Cancer
Cloning
DNA methylation
DNA repair
Epigenetics
Etiology
Evolution
Gene expression
Genetic algorithms
Genomes
Genomic instability
Genotype & phenotype
Microenvironments
Mutation
Optimization techniques
Phenotypic plasticity
Review
Reviews
Tumors
title Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scales%20of%20Cancer%20Evolution:%20Selfish%20Genome%20or%20Cooperating%20Cells?&rft.jtitle=Cancers&rft.au=Brutovsk%C3%BD,%20Branislav&rft.date=2022-07-01&rft.volume=14&rft.issue=13&rft.spage=3253&rft.pages=3253-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14133253&rft_dat=%3Cproquest_pubme%3E2685969326%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685969326&rft_id=info:pmid/35805025&rfr_iscdi=true