Loading…
Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?
The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective...
Saved in:
Published in: | Cancers 2022-07, Vol.14 (13), p.3253 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3 |
container_end_page | |
container_issue | 13 |
container_start_page | 3253 |
container_title | Cancers |
container_volume | 14 |
creator | Brutovský, Branislav |
description | The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space. |
doi_str_mv | 10.3390/cancers14133253 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9264996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685969326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoVmrPXhe8eKlNMptk48EPllqFgofqOaTZpN2y3dRkt-C_d2uLaOcyA_PwMC-D0BXBtwASj4yujQ2RpASAMjhBFxQLOuRcpqd_5h4axLjCXQEQwcU56gHLMMOUXaDHmdGVjYl3Sf6jS8ZbX7VN6eu7ZGYrV8ZlMrG1X9vEhyT3fmODbsp6keS2quLDJTpzuop2cOh99PE8fs9fhtO3yWv-NB0aoFkzpMJhwVzBJJ2TTEtsDBbAgHDHBOkiuIwWBkDMC5myDCiYQgAuuAMhU6yhj-733k07X9vC2LoJulKbUK51-FJel-r_pi6XauG3SlKeSsk7wc1BEPxna2Oj1mU0XQZdW99GRXkmBBFMZB16fYSufBvqLt6OYpJLoDvhaE-Z4GMM1v0eQ7DaPUgdPQi-AaMWgWY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685969326</pqid></control><display><type>article</type><title>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Brutovský, Branislav</creator><creatorcontrib>Brutovský, Branislav</creatorcontrib><description>The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14133253</identifier><identifier>PMID: 35805025</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Apoptosis ; Biology ; Cancer ; Cloning ; DNA methylation ; DNA repair ; Epigenetics ; Etiology ; Evolution ; Gene expression ; Genetic algorithms ; Genomes ; Genomic instability ; Genotype & phenotype ; Microenvironments ; Mutation ; Optimization techniques ; Phenotypic plasticity ; Review ; Reviews ; Tumors</subject><ispartof>Cancers, 2022-07, Vol.14 (13), p.3253</ispartof><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the author. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</citedby><cites>FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</cites><orcidid>0000-0003-3454-3946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2685969326/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2685969326?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Brutovský, Branislav</creatorcontrib><title>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</title><title>Cancers</title><description>The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.</description><subject>Apoptosis</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cloning</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>Epigenetics</subject><subject>Etiology</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Genotype & phenotype</subject><subject>Microenvironments</subject><subject>Mutation</subject><subject>Optimization techniques</subject><subject>Phenotypic plasticity</subject><subject>Review</subject><subject>Reviews</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LAzEQhoMoVmrPXhe8eKlNMptk48EPllqFgofqOaTZpN2y3dRkt-C_d2uLaOcyA_PwMC-D0BXBtwASj4yujQ2RpASAMjhBFxQLOuRcpqd_5h4axLjCXQEQwcU56gHLMMOUXaDHmdGVjYl3Sf6jS8ZbX7VN6eu7ZGYrV8ZlMrG1X9vEhyT3fmODbsp6keS2quLDJTpzuop2cOh99PE8fs9fhtO3yWv-NB0aoFkzpMJhwVzBJJ2TTEtsDBbAgHDHBOkiuIwWBkDMC5myDCiYQgAuuAMhU6yhj-733k07X9vC2LoJulKbUK51-FJel-r_pi6XauG3SlKeSsk7wc1BEPxna2Oj1mU0XQZdW99GRXkmBBFMZB16fYSufBvqLt6OYpJLoDvhaE-Z4GMM1v0eQ7DaPUgdPQi-AaMWgWY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Brutovský, Branislav</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3454-3946</orcidid></search><sort><creationdate>20220701</creationdate><title>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</title><author>Brutovský, Branislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apoptosis</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cloning</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>Epigenetics</topic><topic>Etiology</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Genotype & phenotype</topic><topic>Microenvironments</topic><topic>Mutation</topic><topic>Optimization techniques</topic><topic>Phenotypic plasticity</topic><topic>Review</topic><topic>Reviews</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brutovský, Branislav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brutovský, Branislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scales of Cancer Evolution: Selfish Genome or Cooperating Cells?</atitle><jtitle>Cancers</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>14</volume><issue>13</issue><spage>3253</spage><pages>3253-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35805025</pmid><doi>10.3390/cancers14133253</doi><orcidid>https://orcid.org/0000-0003-3454-3946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-07, Vol.14 (13), p.3253 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9264996 |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Apoptosis Biology Cancer Cloning DNA methylation DNA repair Epigenetics Etiology Evolution Gene expression Genetic algorithms Genomes Genomic instability Genotype & phenotype Microenvironments Mutation Optimization techniques Phenotypic plasticity Review Reviews Tumors |
title | Scales of Cancer Evolution: Selfish Genome or Cooperating Cells? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scales%20of%20Cancer%20Evolution:%20Selfish%20Genome%20or%20Cooperating%20Cells?&rft.jtitle=Cancers&rft.au=Brutovsk%C3%BD,%20Branislav&rft.date=2022-07-01&rft.volume=14&rft.issue=13&rft.spage=3253&rft.pages=3253-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14133253&rft_dat=%3Cproquest_pubme%3E2685969326%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-27f075fd592b18a90cc0735316f571141f82dc337bd9458323cd730d6f37940a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685969326&rft_id=info:pmid/35805025&rfr_iscdi=true |