Loading…
Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes
To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice....
Saved in:
Published in: | International journal of molecular sciences 2022-06, Vol.23 (13), p.7014 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3 |
container_end_page | |
container_issue | 13 |
container_start_page | 7014 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Lacerda, José Thalles Gomes, Patrícia R. L. Zanetti, Giovanna Mezzalira, Nathana Lima, Otoniel G. de Assis, Leonardo V. M. Guler, Ali Castrucci, Ana Maria Moraes, Maria Nathália |
description | To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice. |
doi_str_mv | 10.3390/ijms23137014 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9266899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687720769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</originalsourceid><addsrcrecordid>eNpdkUFvEzEQhS1E1Za2N36AJS4cCB3bm7V9QUJRCUipWlUtV2vinW0cdu1g7xb492xohQqneZr59DQzj7HXAt4rZeE8bPsilVAaRPWCHYtKyhlArV8-00fsVSlbAKnk3B6yIzU3UIOEY7ZZof_GU8tvb66_Cr7YYIzU8cvUjB0OVCY1FuJLisQvfu4ylRJS5BgbvgoPlPl1TgOlnviPMGz4sht9mvhLGnCdulD6P5b3VE7ZQYtdobOnesLuPl3cLj7PVlfLL4uPq5lXwg6zVgIYDQ1a36BZqxqM0Eq06wotCi9wjgi6VQK9MsqDQazmVVUpo4WmqXnCPjz67sZ1T42nOGTs3C6HHvMvlzC4fycxbNx9enBW1rWxdjJ4-2SQ0_eRyuD6UDx1HUaafuFkbbSWoOs9-uY_dJvGHKfz9lQtlK2EmKh3j5TPqZRM7d9lBLh9hO55hOo3OYaNrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686139411</pqid></control><display><type>article</type><title>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Lacerda, José Thalles ; Gomes, Patrícia R. L. ; Zanetti, Giovanna ; Mezzalira, Nathana ; Lima, Otoniel G. ; de Assis, Leonardo V. M. ; Guler, Ali ; Castrucci, Ana Maria ; Moraes, Maria Nathália</creator><creatorcontrib>Lacerda, José Thalles ; Gomes, Patrícia R. L. ; Zanetti, Giovanna ; Mezzalira, Nathana ; Lima, Otoniel G. ; de Assis, Leonardo V. M. ; Guler, Ali ; Castrucci, Ana Maria ; Moraes, Maria Nathália</creatorcontrib><description>To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23137014</identifier><identifier>PMID: 35806020</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>AKT protein ; Body fat ; Capsaicin receptors ; Circadian rhythm ; Clock systems ; Energy ; Enzymes ; Gene expression ; Genotype & phenotype ; Glucagon ; Gluconeogenesis ; Glucose ; Glucose metabolism ; Glucose transporter ; Glycogen ; Glycogens ; Homeostasis ; Inflammation ; Kinases ; Lipid metabolism ; Lipids ; Liver ; Metabolism ; Period 1 protein ; Peroxisome proliferator-activated receptors ; Physiology ; Protein kinase A ; Proteomes ; Proteomics ; Rodents ; Signal transduction ; Transient receptor potential proteins</subject><ispartof>International journal of molecular sciences, 2022-06, Vol.23 (13), p.7014</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</citedby><cites>FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</cites><orcidid>0000-0001-5209-0835 ; 0000-0002-0668-3063 ; 0000-0003-2479-4477 ; 0000-0003-4588-7197 ; 0000-0002-2065-8198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686139411?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686139411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,38497,43876,44571,53772,53774,74161,74875</link.rule.ids></links><search><creatorcontrib>Lacerda, José Thalles</creatorcontrib><creatorcontrib>Gomes, Patrícia R. L.</creatorcontrib><creatorcontrib>Zanetti, Giovanna</creatorcontrib><creatorcontrib>Mezzalira, Nathana</creatorcontrib><creatorcontrib>Lima, Otoniel G.</creatorcontrib><creatorcontrib>de Assis, Leonardo V. M.</creatorcontrib><creatorcontrib>Guler, Ali</creatorcontrib><creatorcontrib>Castrucci, Ana Maria</creatorcontrib><creatorcontrib>Moraes, Maria Nathália</creatorcontrib><title>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</title><title>International journal of molecular sciences</title><description>To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.</description><subject>AKT protein</subject><subject>Body fat</subject><subject>Capsaicin receptors</subject><subject>Circadian rhythm</subject><subject>Clock systems</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Genotype & phenotype</subject><subject>Glucagon</subject><subject>Gluconeogenesis</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose transporter</subject><subject>Glycogen</subject><subject>Glycogens</subject><subject>Homeostasis</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver</subject><subject>Metabolism</subject><subject>Period 1 protein</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Physiology</subject><subject>Protein kinase A</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Transient receptor potential proteins</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkUFvEzEQhS1E1Za2N36AJS4cCB3bm7V9QUJRCUipWlUtV2vinW0cdu1g7xb492xohQqneZr59DQzj7HXAt4rZeE8bPsilVAaRPWCHYtKyhlArV8-00fsVSlbAKnk3B6yIzU3UIOEY7ZZof_GU8tvb66_Cr7YYIzU8cvUjB0OVCY1FuJLisQvfu4ylRJS5BgbvgoPlPl1TgOlnviPMGz4sht9mvhLGnCdulD6P5b3VE7ZQYtdobOnesLuPl3cLj7PVlfLL4uPq5lXwg6zVgIYDQ1a36BZqxqM0Eq06wotCi9wjgi6VQK9MsqDQazmVVUpo4WmqXnCPjz67sZ1T42nOGTs3C6HHvMvlzC4fycxbNx9enBW1rWxdjJ4-2SQ0_eRyuD6UDx1HUaafuFkbbSWoOs9-uY_dJvGHKfz9lQtlK2EmKh3j5TPqZRM7d9lBLh9hO55hOo3OYaNrQ</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Lacerda, José Thalles</creator><creator>Gomes, Patrícia R. L.</creator><creator>Zanetti, Giovanna</creator><creator>Mezzalira, Nathana</creator><creator>Lima, Otoniel G.</creator><creator>de Assis, Leonardo V. M.</creator><creator>Guler, Ali</creator><creator>Castrucci, Ana Maria</creator><creator>Moraes, Maria Nathália</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5209-0835</orcidid><orcidid>https://orcid.org/0000-0002-0668-3063</orcidid><orcidid>https://orcid.org/0000-0003-2479-4477</orcidid><orcidid>https://orcid.org/0000-0003-4588-7197</orcidid><orcidid>https://orcid.org/0000-0002-2065-8198</orcidid></search><sort><creationdate>20220624</creationdate><title>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</title><author>Lacerda, José Thalles ; Gomes, Patrícia R. L. ; Zanetti, Giovanna ; Mezzalira, Nathana ; Lima, Otoniel G. ; de Assis, Leonardo V. M. ; Guler, Ali ; Castrucci, Ana Maria ; Moraes, Maria Nathália</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AKT protein</topic><topic>Body fat</topic><topic>Capsaicin receptors</topic><topic>Circadian rhythm</topic><topic>Clock systems</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Genotype & phenotype</topic><topic>Glucagon</topic><topic>Gluconeogenesis</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose transporter</topic><topic>Glycogen</topic><topic>Glycogens</topic><topic>Homeostasis</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver</topic><topic>Metabolism</topic><topic>Period 1 protein</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Physiology</topic><topic>Protein kinase A</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Transient receptor potential proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacerda, José Thalles</creatorcontrib><creatorcontrib>Gomes, Patrícia R. L.</creatorcontrib><creatorcontrib>Zanetti, Giovanna</creatorcontrib><creatorcontrib>Mezzalira, Nathana</creatorcontrib><creatorcontrib>Lima, Otoniel G.</creatorcontrib><creatorcontrib>de Assis, Leonardo V. M.</creatorcontrib><creatorcontrib>Guler, Ali</creatorcontrib><creatorcontrib>Castrucci, Ana Maria</creatorcontrib><creatorcontrib>Moraes, Maria Nathália</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacerda, José Thalles</au><au>Gomes, Patrícia R. L.</au><au>Zanetti, Giovanna</au><au>Mezzalira, Nathana</au><au>Lima, Otoniel G.</au><au>de Assis, Leonardo V. M.</au><au>Guler, Ali</au><au>Castrucci, Ana Maria</au><au>Moraes, Maria Nathália</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-06-24</date><risdate>2022</risdate><volume>23</volume><issue>13</issue><spage>7014</spage><pages>7014-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806020</pmid><doi>10.3390/ijms23137014</doi><orcidid>https://orcid.org/0000-0001-5209-0835</orcidid><orcidid>https://orcid.org/0000-0002-0668-3063</orcidid><orcidid>https://orcid.org/0000-0003-2479-4477</orcidid><orcidid>https://orcid.org/0000-0003-4588-7197</orcidid><orcidid>https://orcid.org/0000-0002-2065-8198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-06, Vol.23 (13), p.7014 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9266899 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Coronavirus Research Database |
subjects | AKT protein Body fat Capsaicin receptors Circadian rhythm Clock systems Energy Enzymes Gene expression Genotype & phenotype Glucagon Gluconeogenesis Glucose Glucose metabolism Glucose transporter Glycogen Glycogens Homeostasis Inflammation Kinases Lipid metabolism Lipids Liver Metabolism Period 1 protein Peroxisome proliferator-activated receptors Physiology Protein kinase A Proteomes Proteomics Rodents Signal transduction Transient receptor potential proteins |
title | Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20TRPV1%20Channel%20Modulates%20Mouse%20Gene%20Expression%20and%20Liver%20Proteome%20with%20Glucose%20Metabolism%20Changes&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lacerda,%20Jos%C3%A9%20Thalles&rft.date=2022-06-24&rft.volume=23&rft.issue=13&rft.spage=7014&rft.pages=7014-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23137014&rft_dat=%3Cproquest_pubme%3E2687720769%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686139411&rft_id=info:pmid/35806020&rfr_iscdi=true |