Loading…

Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes

To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice....

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-06, Vol.23 (13), p.7014
Main Authors: Lacerda, José Thalles, Gomes, Patrícia R. L., Zanetti, Giovanna, Mezzalira, Nathana, Lima, Otoniel G., de Assis, Leonardo V. M., Guler, Ali, Castrucci, Ana Maria, Moraes, Maria Nathália
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3
cites cdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3
container_end_page
container_issue 13
container_start_page 7014
container_title International journal of molecular sciences
container_volume 23
creator Lacerda, José Thalles
Gomes, Patrícia R. L.
Zanetti, Giovanna
Mezzalira, Nathana
Lima, Otoniel G.
de Assis, Leonardo V. M.
Guler, Ali
Castrucci, Ana Maria
Moraes, Maria Nathália
description To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.
doi_str_mv 10.3390/ijms23137014
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9266899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687720769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</originalsourceid><addsrcrecordid>eNpdkUFvEzEQhS1E1Za2N36AJS4cCB3bm7V9QUJRCUipWlUtV2vinW0cdu1g7xb492xohQqneZr59DQzj7HXAt4rZeE8bPsilVAaRPWCHYtKyhlArV8-00fsVSlbAKnk3B6yIzU3UIOEY7ZZof_GU8tvb66_Cr7YYIzU8cvUjB0OVCY1FuJLisQvfu4ylRJS5BgbvgoPlPl1TgOlnviPMGz4sht9mvhLGnCdulD6P5b3VE7ZQYtdobOnesLuPl3cLj7PVlfLL4uPq5lXwg6zVgIYDQ1a36BZqxqM0Eq06wotCi9wjgi6VQK9MsqDQazmVVUpo4WmqXnCPjz67sZ1T42nOGTs3C6HHvMvlzC4fycxbNx9enBW1rWxdjJ4-2SQ0_eRyuD6UDx1HUaafuFkbbSWoOs9-uY_dJvGHKfz9lQtlK2EmKh3j5TPqZRM7d9lBLh9hO55hOo3OYaNrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686139411</pqid></control><display><type>article</type><title>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Lacerda, José Thalles ; Gomes, Patrícia R. L. ; Zanetti, Giovanna ; Mezzalira, Nathana ; Lima, Otoniel G. ; de Assis, Leonardo V. M. ; Guler, Ali ; Castrucci, Ana Maria ; Moraes, Maria Nathália</creator><creatorcontrib>Lacerda, José Thalles ; Gomes, Patrícia R. L. ; Zanetti, Giovanna ; Mezzalira, Nathana ; Lima, Otoniel G. ; de Assis, Leonardo V. M. ; Guler, Ali ; Castrucci, Ana Maria ; Moraes, Maria Nathália</creatorcontrib><description>To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23137014</identifier><identifier>PMID: 35806020</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>AKT protein ; Body fat ; Capsaicin receptors ; Circadian rhythm ; Clock systems ; Energy ; Enzymes ; Gene expression ; Genotype &amp; phenotype ; Glucagon ; Gluconeogenesis ; Glucose ; Glucose metabolism ; Glucose transporter ; Glycogen ; Glycogens ; Homeostasis ; Inflammation ; Kinases ; Lipid metabolism ; Lipids ; Liver ; Metabolism ; Period 1 protein ; Peroxisome proliferator-activated receptors ; Physiology ; Protein kinase A ; Proteomes ; Proteomics ; Rodents ; Signal transduction ; Transient receptor potential proteins</subject><ispartof>International journal of molecular sciences, 2022-06, Vol.23 (13), p.7014</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</citedby><cites>FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</cites><orcidid>0000-0001-5209-0835 ; 0000-0002-0668-3063 ; 0000-0003-2479-4477 ; 0000-0003-4588-7197 ; 0000-0002-2065-8198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686139411?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686139411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,38497,43876,44571,53772,53774,74161,74875</link.rule.ids></links><search><creatorcontrib>Lacerda, José Thalles</creatorcontrib><creatorcontrib>Gomes, Patrícia R. L.</creatorcontrib><creatorcontrib>Zanetti, Giovanna</creatorcontrib><creatorcontrib>Mezzalira, Nathana</creatorcontrib><creatorcontrib>Lima, Otoniel G.</creatorcontrib><creatorcontrib>de Assis, Leonardo V. M.</creatorcontrib><creatorcontrib>Guler, Ali</creatorcontrib><creatorcontrib>Castrucci, Ana Maria</creatorcontrib><creatorcontrib>Moraes, Maria Nathália</creatorcontrib><title>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</title><title>International journal of molecular sciences</title><description>To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.</description><subject>AKT protein</subject><subject>Body fat</subject><subject>Capsaicin receptors</subject><subject>Circadian rhythm</subject><subject>Clock systems</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Genotype &amp; phenotype</subject><subject>Glucagon</subject><subject>Gluconeogenesis</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose transporter</subject><subject>Glycogen</subject><subject>Glycogens</subject><subject>Homeostasis</subject><subject>Inflammation</subject><subject>Kinases</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver</subject><subject>Metabolism</subject><subject>Period 1 protein</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Physiology</subject><subject>Protein kinase A</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Transient receptor potential proteins</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNpdkUFvEzEQhS1E1Za2N36AJS4cCB3bm7V9QUJRCUipWlUtV2vinW0cdu1g7xb492xohQqneZr59DQzj7HXAt4rZeE8bPsilVAaRPWCHYtKyhlArV8-00fsVSlbAKnk3B6yIzU3UIOEY7ZZof_GU8tvb66_Cr7YYIzU8cvUjB0OVCY1FuJLisQvfu4ylRJS5BgbvgoPlPl1TgOlnviPMGz4sht9mvhLGnCdulD6P5b3VE7ZQYtdobOnesLuPl3cLj7PVlfLL4uPq5lXwg6zVgIYDQ1a36BZqxqM0Eq06wotCi9wjgi6VQK9MsqDQazmVVUpo4WmqXnCPjz67sZ1T42nOGTs3C6HHvMvlzC4fycxbNx9enBW1rWxdjJ4-2SQ0_eRyuD6UDx1HUaafuFkbbSWoOs9-uY_dJvGHKfz9lQtlK2EmKh3j5TPqZRM7d9lBLh9hO55hOo3OYaNrQ</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Lacerda, José Thalles</creator><creator>Gomes, Patrícia R. L.</creator><creator>Zanetti, Giovanna</creator><creator>Mezzalira, Nathana</creator><creator>Lima, Otoniel G.</creator><creator>de Assis, Leonardo V. M.</creator><creator>Guler, Ali</creator><creator>Castrucci, Ana Maria</creator><creator>Moraes, Maria Nathália</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5209-0835</orcidid><orcidid>https://orcid.org/0000-0002-0668-3063</orcidid><orcidid>https://orcid.org/0000-0003-2479-4477</orcidid><orcidid>https://orcid.org/0000-0003-4588-7197</orcidid><orcidid>https://orcid.org/0000-0002-2065-8198</orcidid></search><sort><creationdate>20220624</creationdate><title>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</title><author>Lacerda, José Thalles ; Gomes, Patrícia R. L. ; Zanetti, Giovanna ; Mezzalira, Nathana ; Lima, Otoniel G. ; de Assis, Leonardo V. M. ; Guler, Ali ; Castrucci, Ana Maria ; Moraes, Maria Nathália</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AKT protein</topic><topic>Body fat</topic><topic>Capsaicin receptors</topic><topic>Circadian rhythm</topic><topic>Clock systems</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Genotype &amp; phenotype</topic><topic>Glucagon</topic><topic>Gluconeogenesis</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose transporter</topic><topic>Glycogen</topic><topic>Glycogens</topic><topic>Homeostasis</topic><topic>Inflammation</topic><topic>Kinases</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver</topic><topic>Metabolism</topic><topic>Period 1 protein</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Physiology</topic><topic>Protein kinase A</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Transient receptor potential proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacerda, José Thalles</creatorcontrib><creatorcontrib>Gomes, Patrícia R. L.</creatorcontrib><creatorcontrib>Zanetti, Giovanna</creatorcontrib><creatorcontrib>Mezzalira, Nathana</creatorcontrib><creatorcontrib>Lima, Otoniel G.</creatorcontrib><creatorcontrib>de Assis, Leonardo V. M.</creatorcontrib><creatorcontrib>Guler, Ali</creatorcontrib><creatorcontrib>Castrucci, Ana Maria</creatorcontrib><creatorcontrib>Moraes, Maria Nathália</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacerda, José Thalles</au><au>Gomes, Patrícia R. L.</au><au>Zanetti, Giovanna</au><au>Mezzalira, Nathana</au><au>Lima, Otoniel G.</au><au>de Assis, Leonardo V. M.</au><au>Guler, Ali</au><au>Castrucci, Ana Maria</au><au>Moraes, Maria Nathália</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-06-24</date><risdate>2022</risdate><volume>23</volume><issue>13</issue><spage>7014</spage><pages>7014-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806020</pmid><doi>10.3390/ijms23137014</doi><orcidid>https://orcid.org/0000-0001-5209-0835</orcidid><orcidid>https://orcid.org/0000-0002-0668-3063</orcidid><orcidid>https://orcid.org/0000-0003-2479-4477</orcidid><orcidid>https://orcid.org/0000-0003-4588-7197</orcidid><orcidid>https://orcid.org/0000-0002-2065-8198</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-06, Vol.23 (13), p.7014
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9266899
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Coronavirus Research Database
subjects AKT protein
Body fat
Capsaicin receptors
Circadian rhythm
Clock systems
Energy
Enzymes
Gene expression
Genotype & phenotype
Glucagon
Gluconeogenesis
Glucose
Glucose metabolism
Glucose transporter
Glycogen
Glycogens
Homeostasis
Inflammation
Kinases
Lipid metabolism
Lipids
Liver
Metabolism
Period 1 protein
Peroxisome proliferator-activated receptors
Physiology
Protein kinase A
Proteomes
Proteomics
Rodents
Signal transduction
Transient receptor potential proteins
title Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lack%20of%20TRPV1%20Channel%20Modulates%20Mouse%20Gene%20Expression%20and%20Liver%20Proteome%20with%20Glucose%20Metabolism%20Changes&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lacerda,%20Jos%C3%A9%20Thalles&rft.date=2022-06-24&rft.volume=23&rft.issue=13&rft.spage=7014&rft.pages=7014-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23137014&rft_dat=%3Cproquest_pubme%3E2687720769%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f200870da9cda8b36081731fb4a9a1c1a5aa07f31ac383c08aa4544438717eac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686139411&rft_id=info:pmid/35806020&rfr_iscdi=true