Loading…

RNAi Silencing of HIF-1α Ameliorates Lupus Development in MRL/lpr Mice

Th17 cell and IL-17-mediated autoimmunity and inflammatory responses have been implicated in the development of organ damage in systemic lupus erythematosus (SLE), and new evidence suggests that hypoxia-inducible factor 1α (HIF-1α) enhances Th17 differentiation and promotes IL-17 production. However...

Full description

Saved in:
Bibliographic Details
Published in:Inflammation 2018-10, Vol.41 (5), p.1717-1730
Main Authors: Zhao, Wei, Wu, Changhao, Li, Lian-Ju, Fan, Yin-Guang, Pan, Hai-Feng, Tao, Jin-Hui, Leng, Rui-Xue, Ye, Dong-Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Th17 cell and IL-17-mediated autoimmunity and inflammatory responses have been implicated in the development of organ damage in systemic lupus erythematosus (SLE), and new evidence suggests that hypoxia-inducible factor 1α (HIF-1α) enhances Th17 differentiation and promotes IL-17 production. However, the role of HIF-1α in the pathogenesis of lupus has not been examined. In this study, we silenced HIF-1α in vivo in a murine model of SLE to investigate whether lupus progression and the associated inflammatory pathways were affected by downregulating HIF-1α. Treatment with HIF1α-shRNA suppressed serum IL-17 level in MRL/lpr mice. Decreased anti-nucleosome antibody level, reduced urinary protein concentrations, ameliorated pathological damage, and remarkably reduced renal IgG and C3 depositions were observed in HIF1α-shRNA-treated group compared to those in the controls. Our results provide the first evidence for a role of HIF-1α in the pathogenesis of lupus and suggest a potential new therapeutic avenue for the treatment of lupus patients through reducing the HIF-1α level.
ISSN:0360-3997
1573-2576
DOI:10.1007/s10753-018-0815-6