Loading…
Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin
The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 display...
Saved in:
Published in: | The journal of physical chemistry letters 2020-06, Vol.11 (11), p.4245-4252 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923 |
container_end_page | 4252 |
container_issue | 11 |
container_start_page | 4245 |
container_title | The journal of physical chemistry letters |
container_volume | 11 |
creator | Manathunga, Madushanka Jenkins, Adam J Orozco-Gonzalez, Yoelvis Ghanbarpour, Alireza Borhan, Babak Geiger, James H Larsen, Delmar S Olivucci, Massimo |
description | The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-
to
-
conversion of retinal protonated Schiff base (rPSB) and
-
to 15-
isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism. |
doi_str_mv | 10.1021/acs.jpclett.0c00751 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9272672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399839006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923</originalsourceid><addsrcrecordid>eNpVkdtKAzEQhoMo1tMTCLKX3rTmsLvZ3AhSPEFB8XApIU1m3ZTtZk1SQZ_e1NZSYSDD5J9_hvkQOiV4RDAlF0qH0azXLcQ4whpjXpAddEBEXg05qYrdrXyADkOYYVwKXPF9NGCU8bwk-AC9jd28X0QVretUm6nOZM896Ohd0K63Ohs3yisdwdvvX1Hm6iw2kD02Ljr9lcYvK6rLrny0tdU2uTw1zrg-2O4Y7dWqDXCyfo_Q6831y_huOHm4vR9fTYY6x0UcGlKXXKSNqqmAfCqMqiA3lBpCuS4oFjVAyUsllNGYFUZBCqZBTEVOCkHZEbpc-faL6RyMhi561cre27nyX9IpK___dLaR7-5TCsppyZcG52sD7z4WEKKc26ChbVUHbhEkZUJUTKQLJilbSXW6UfBQb8YQLJdgZAIj12DkGkzqOtvecNPzR4L9AEr3kGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399839006</pqid></control><display><type>article</type><title>Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Manathunga, Madushanka ; Jenkins, Adam J ; Orozco-Gonzalez, Yoelvis ; Ghanbarpour, Alireza ; Borhan, Babak ; Geiger, James H ; Larsen, Delmar S ; Olivucci, Massimo</creator><creatorcontrib>Manathunga, Madushanka ; Jenkins, Adam J ; Orozco-Gonzalez, Yoelvis ; Ghanbarpour, Alireza ; Borhan, Babak ; Geiger, James H ; Larsen, Delmar S ; Olivucci, Massimo</creatorcontrib><description>The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-
to
-
conversion of retinal protonated Schiff base (rPSB) and
-
to 15-
isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c00751</identifier><identifier>PMID: 32374610</identifier><language>eng</language><publisher>United States</publisher><subject>Isomerism ; Light ; Quantum Theory ; Receptors, Retinoic Acid ; Rhodopsin - chemistry ; Rhodopsin - radiation effects ; Schiff Bases - chemistry ; Spectrum Analysis - methods</subject><ispartof>The journal of physical chemistry letters, 2020-06, Vol.11 (11), p.4245-4252</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923</citedby><cites>FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923</cites><orcidid>0000-0002-8247-209X ; 0000-0003-4522-2689 ; 0000-0002-7485-029X ; 0000-0001-7225-2424 ; 0000-0002-3594-8112 ; 0000-0002-3193-0732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32374610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manathunga, Madushanka</creatorcontrib><creatorcontrib>Jenkins, Adam J</creatorcontrib><creatorcontrib>Orozco-Gonzalez, Yoelvis</creatorcontrib><creatorcontrib>Ghanbarpour, Alireza</creatorcontrib><creatorcontrib>Borhan, Babak</creatorcontrib><creatorcontrib>Geiger, James H</creatorcontrib><creatorcontrib>Larsen, Delmar S</creatorcontrib><creatorcontrib>Olivucci, Massimo</creatorcontrib><title>Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin</title><title>The journal of physical chemistry letters</title><addtitle>J Phys Chem Lett</addtitle><description>The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-
to
-
conversion of retinal protonated Schiff base (rPSB) and
-
to 15-
isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.</description><subject>Isomerism</subject><subject>Light</subject><subject>Quantum Theory</subject><subject>Receptors, Retinoic Acid</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - radiation effects</subject><subject>Schiff Bases - chemistry</subject><subject>Spectrum Analysis - methods</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkdtKAzEQhoMo1tMTCLKX3rTmsLvZ3AhSPEFB8XApIU1m3ZTtZk1SQZ_e1NZSYSDD5J9_hvkQOiV4RDAlF0qH0azXLcQ4whpjXpAddEBEXg05qYrdrXyADkOYYVwKXPF9NGCU8bwk-AC9jd28X0QVretUm6nOZM896Ohd0K63Ohs3yisdwdvvX1Hm6iw2kD02Ljr9lcYvK6rLrny0tdU2uTw1zrg-2O4Y7dWqDXCyfo_Q6831y_huOHm4vR9fTYY6x0UcGlKXXKSNqqmAfCqMqiA3lBpCuS4oFjVAyUsllNGYFUZBCqZBTEVOCkHZEbpc-faL6RyMhi561cre27nyX9IpK___dLaR7-5TCsppyZcG52sD7z4WEKKc26ChbVUHbhEkZUJUTKQLJilbSXW6UfBQb8YQLJdgZAIj12DkGkzqOtvecNPzR4L9AEr3kGY</recordid><startdate>20200604</startdate><enddate>20200604</enddate><creator>Manathunga, Madushanka</creator><creator>Jenkins, Adam J</creator><creator>Orozco-Gonzalez, Yoelvis</creator><creator>Ghanbarpour, Alireza</creator><creator>Borhan, Babak</creator><creator>Geiger, James H</creator><creator>Larsen, Delmar S</creator><creator>Olivucci, Massimo</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8247-209X</orcidid><orcidid>https://orcid.org/0000-0003-4522-2689</orcidid><orcidid>https://orcid.org/0000-0002-7485-029X</orcidid><orcidid>https://orcid.org/0000-0001-7225-2424</orcidid><orcidid>https://orcid.org/0000-0002-3594-8112</orcidid><orcidid>https://orcid.org/0000-0002-3193-0732</orcidid></search><sort><creationdate>20200604</creationdate><title>Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin</title><author>Manathunga, Madushanka ; Jenkins, Adam J ; Orozco-Gonzalez, Yoelvis ; Ghanbarpour, Alireza ; Borhan, Babak ; Geiger, James H ; Larsen, Delmar S ; Olivucci, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Isomerism</topic><topic>Light</topic><topic>Quantum Theory</topic><topic>Receptors, Retinoic Acid</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - radiation effects</topic><topic>Schiff Bases - chemistry</topic><topic>Spectrum Analysis - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manathunga, Madushanka</creatorcontrib><creatorcontrib>Jenkins, Adam J</creatorcontrib><creatorcontrib>Orozco-Gonzalez, Yoelvis</creatorcontrib><creatorcontrib>Ghanbarpour, Alireza</creatorcontrib><creatorcontrib>Borhan, Babak</creatorcontrib><creatorcontrib>Geiger, James H</creatorcontrib><creatorcontrib>Larsen, Delmar S</creatorcontrib><creatorcontrib>Olivucci, Massimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manathunga, Madushanka</au><au>Jenkins, Adam J</au><au>Orozco-Gonzalez, Yoelvis</au><au>Ghanbarpour, Alireza</au><au>Borhan, Babak</au><au>Geiger, James H</au><au>Larsen, Delmar S</au><au>Olivucci, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J Phys Chem Lett</addtitle><date>2020-06-04</date><risdate>2020</risdate><volume>11</volume><issue>11</issue><spage>4245</spage><epage>4252</epage><pages>4245-4252</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-
to
-
conversion of retinal protonated Schiff base (rPSB) and
-
to 15-
isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.</abstract><cop>United States</cop><pmid>32374610</pmid><doi>10.1021/acs.jpclett.0c00751</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8247-209X</orcidid><orcidid>https://orcid.org/0000-0003-4522-2689</orcidid><orcidid>https://orcid.org/0000-0002-7485-029X</orcidid><orcidid>https://orcid.org/0000-0001-7225-2424</orcidid><orcidid>https://orcid.org/0000-0002-3594-8112</orcidid><orcidid>https://orcid.org/0000-0002-3193-0732</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2020-06, Vol.11 (11), p.4245-4252 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9272672 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Isomerism Light Quantum Theory Receptors, Retinoic Acid Rhodopsin - chemistry Rhodopsin - radiation effects Schiff Bases - chemistry Spectrum Analysis - methods |
title | Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20and%20Spectroscopic%20Characterization%20of%20the%20Photocycle%20of%20an%20Artificial%20Rhodopsin&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Manathunga,%20Madushanka&rft.date=2020-06-04&rft.volume=11&rft.issue=11&rft.spage=4245&rft.epage=4252&rft.pages=4245-4252&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c00751&rft_dat=%3Cproquest_pubme%3E2399839006%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-d1f6797468b9e4b9da8e4d22d127c5209fee676a9adc035daedae3ce9b9415923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2399839006&rft_id=info:pmid/32374610&rfr_iscdi=true |