Loading…
Functional Characterization of the GlcNAc Catabolic Pathway in Cryptococcus deneoformans
The amino sugar -acetyl-d-glucosamine (GlcNAc) is the key constituent of cell wall components and plays an important role in pathogenesis in a wide range of fungi. However, catabolism of GlcNAc has not been studied in basidiomycete fungi. In this study, we identified and characterized a gene cluster...
Saved in:
Published in: | Applied and environmental microbiology 2022-07, Vol.88 (13), p.e0043722-e0043722 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The amino sugar
-acetyl-d-glucosamine (GlcNAc) is the key constituent of cell wall components and plays an important role in pathogenesis in a wide range of fungi. However, catabolism of GlcNAc has not been studied in basidiomycete fungi. In this study, we identified and characterized a gene cluster essential for GlcNAc utilization in Cryptococcus deneoformans, an environmental human fungal pathogen. The
genome contains a GlcNAc transporter (Ngt1), a GlcNAc kinase (Hxk3), a GlcNAc-6-phosphate deacetylase (Dac1), and a glucosamine-6-phosphate deaminase (Nag1). Their expression levels were highly induced in cultures containing GlcNAc as the sole carbon source, and the corresponding mutants showed severe growth defects in the presence of GlcNAc. Functional and biochemical analyses revealed that
encodes a novel GlcNAc kinase. Site-directed mutations of conserved residues of Hxk3 indicated that ATP binding and GlcNAc binding are essential for GlcNAc kinase activities. Taken together, the results from this study provide crucial insights into basidiomycete GlcNAc catabolism.
-Acetylglucosamine (GlcNAc) is recognized as not only the building block of chitin but also an important signaling molecule in fungi. The catabolic pathway of GlcNAc also plays an important role in vital biological processes in fungi. However, the utilization pathway of GlcNAc in the phylum
, which contains more than 41,000 species, remains unknown. Cryptococcus deneoformans is a representative basidiomycetous pathogen that causes life-threatening meningitis. In this study, we characterized a gene cluster essential for GlcNAc utilization in
and identified a novel GlcNAc kinase. The results of this study provide important insights into basidiomycete GlcNAc catabolism and offer a starting point for revealing its role in pathogenesis. |
---|---|
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/aem.00437-22 |