Loading…

Mobile brain/body imaging of landmark‐based navigation with high‐density EEG

Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learnin...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2021-12, Vol.54 (12), p.8256-8282
Main Authors: Delaux, Alexandre, Saint Aubert, Jean‐Baptiste, Ramanoël, Stephen, Bécu, Marcia, Gehrke, Lukas, Klug, Marius, Chavarriaga, Ricardo, Sahel, José‐Alain, Gramann, Klaus, Arleo, Angelo, Solis‐Escalante, Teodoro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63
cites cdi_FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63
container_end_page 8282
container_issue 12
container_start_page 8256
container_title The European journal of neuroscience
container_volume 54
creator Delaux, Alexandre
Saint Aubert, Jean‐Baptiste
Ramanoël, Stephen
Bécu, Marcia
Gehrke, Lukas
Klug, Marius
Chavarriaga, Ricardo
Sahel, José‐Alain
Gramann, Klaus
Arleo, Angelo
Solis‐Escalante, Teodoro
description Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation. Despite the inherent mobility of natural navigation, there is only a handful of recordings of human brain activity during active exploration in space. Using Mobile Brain/Body Imaging on subjects performing landmark‐based reorientation, we retrieved exploitable neural signals in deep cortical regions and a set of visual, somatosensory, and motor areas. We discuss their neurobehavioral dynamics with respect to similar static experimental paradigms and mobile EEG correlates of locomotion control.
doi_str_mv 10.1111/ejn.15190
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9291975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503434817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EokNhwQugSGxgkY5PfImzQaqqoQUNlwVI7CzHsRMPGbu1M1PNro_QZ-RJcJlSlUp4cySf7_zn8iP0EvAR5Dc3K38EDBr8CM2Aclw2jIvHaIYbRkoB_McBepbSCmMsOGVP0QEhNRFC4Bn6-im0bjRFG5Xz8zZ0u8KtVe98XwRbjMp3axV__rq6blUyXeHV1vVqcsEXl24aisH1Q052xic37YrF4vQ5emLVmMyL23iIvr9ffDs5K5dfTj-cHC9LzQjgkhDOWQWaaAZWUc3rSmjVKWEsIbohxOYVWJ1hAbRtjbUN8JZaXQksmo6TQ_Rur3u-adem08ZPUY3yPObx404G5eS_Ge8G2YetbKoGmpplgbd7geFB2dnxUt78YVJBTQnbQmbf3DaL4WJj0iTXLmkz5vuYsEmyYphQQgXUGX39AF2FTfT5FLLiwCmnQO411zGkFI29mwCwvPFUZk_lH08z--r-pnfkXxMzMN8Dl9nJ3f-V5OLj573kb1AVrAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616464135</pqid></control><display><type>article</type><title>Mobile brain/body imaging of landmark‐based navigation with high‐density EEG</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Delaux, Alexandre ; Saint Aubert, Jean‐Baptiste ; Ramanoël, Stephen ; Bécu, Marcia ; Gehrke, Lukas ; Klug, Marius ; Chavarriaga, Ricardo ; Sahel, José‐Alain ; Gramann, Klaus ; Arleo, Angelo ; Solis‐Escalante, Teodoro</creator><creatorcontrib>Delaux, Alexandre ; Saint Aubert, Jean‐Baptiste ; Ramanoël, Stephen ; Bécu, Marcia ; Gehrke, Lukas ; Klug, Marius ; Chavarriaga, Ricardo ; Sahel, José‐Alain ; Gramann, Klaus ; Arleo, Angelo ; Solis‐Escalante, Teodoro</creatorcontrib><description>Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation. Despite the inherent mobility of natural navigation, there is only a handful of recordings of human brain activity during active exploration in space. Using Mobile Brain/Body Imaging on subjects performing landmark‐based reorientation, we retrieved exploitable neural signals in deep cortical regions and a set of visual, somatosensory, and motor areas. We discuss their neurobehavioral dynamics with respect to similar static experimental paradigms and mobile EEG correlates of locomotion control.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.15190</identifier><identifier>PMID: 33738880</identifier><language>eng</language><publisher>France: Wiley Subscription Services, Inc</publisher><subject>Brain - diagnostic imaging ; Brain mapping ; Brain Waves ; Coding ; Cognitive ability ; Cognitive science ; Computer applications ; ecological navigation ; EEG ; Electroencephalography ; Functional magnetic resonance imaging ; Humans ; Information processing ; Magnetic Resonance Imaging - methods ; Medical imaging ; mobile EEG ; Navigation behavior ; Neuroimaging ; Neuroscience ; Proprioception ; retrosplenial complex ; Sensorimotor system ; Sensory integration ; source reconstruction ; Spatial discrimination learning ; Spatial Navigation ; Special Issue ; Synchronization ; virtual reality ; Young Adult ; Young adults</subject><ispartof>The European journal of neuroscience, 2021-12, Vol.54 (12), p.8256-8282</ispartof><rights>2021 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63</citedby><cites>FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63</cites><orcidid>0000-0002-8879-2860 ; 0000-0003-4564-1023 ; 0000-0002-1990-1971 ; 0000-0003-4735-1097 ; 0000-0002-4831-1153 ; 0000-0003-2673-1832 ; 0000-0003-3661-1973 ; 0000-0002-4553-9371 ; 0000-0001-8304-4989 ; 0000-0001-8667-3457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33738880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03217435$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delaux, Alexandre</creatorcontrib><creatorcontrib>Saint Aubert, Jean‐Baptiste</creatorcontrib><creatorcontrib>Ramanoël, Stephen</creatorcontrib><creatorcontrib>Bécu, Marcia</creatorcontrib><creatorcontrib>Gehrke, Lukas</creatorcontrib><creatorcontrib>Klug, Marius</creatorcontrib><creatorcontrib>Chavarriaga, Ricardo</creatorcontrib><creatorcontrib>Sahel, José‐Alain</creatorcontrib><creatorcontrib>Gramann, Klaus</creatorcontrib><creatorcontrib>Arleo, Angelo</creatorcontrib><creatorcontrib>Solis‐Escalante, Teodoro</creatorcontrib><title>Mobile brain/body imaging of landmark‐based navigation with high‐density EEG</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation. Despite the inherent mobility of natural navigation, there is only a handful of recordings of human brain activity during active exploration in space. Using Mobile Brain/Body Imaging on subjects performing landmark‐based reorientation, we retrieved exploitable neural signals in deep cortical regions and a set of visual, somatosensory, and motor areas. We discuss their neurobehavioral dynamics with respect to similar static experimental paradigms and mobile EEG correlates of locomotion control.</description><subject>Brain - diagnostic imaging</subject><subject>Brain mapping</subject><subject>Brain Waves</subject><subject>Coding</subject><subject>Cognitive ability</subject><subject>Cognitive science</subject><subject>Computer applications</subject><subject>ecological navigation</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Information processing</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>mobile EEG</subject><subject>Navigation behavior</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Proprioception</subject><subject>retrosplenial complex</subject><subject>Sensorimotor system</subject><subject>Sensory integration</subject><subject>source reconstruction</subject><subject>Spatial discrimination learning</subject><subject>Spatial Navigation</subject><subject>Special Issue</subject><subject>Synchronization</subject><subject>virtual reality</subject><subject>Young Adult</subject><subject>Young adults</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kctu1DAUhi0EokNhwQugSGxgkY5PfImzQaqqoQUNlwVI7CzHsRMPGbu1M1PNro_QZ-RJcJlSlUp4cySf7_zn8iP0EvAR5Dc3K38EDBr8CM2Aclw2jIvHaIYbRkoB_McBepbSCmMsOGVP0QEhNRFC4Bn6-im0bjRFG5Xz8zZ0u8KtVe98XwRbjMp3axV__rq6blUyXeHV1vVqcsEXl24aisH1Q052xic37YrF4vQ5emLVmMyL23iIvr9ffDs5K5dfTj-cHC9LzQjgkhDOWQWaaAZWUc3rSmjVKWEsIbohxOYVWJ1hAbRtjbUN8JZaXQksmo6TQ_Rur3u-adem08ZPUY3yPObx404G5eS_Ge8G2YetbKoGmpplgbd7geFB2dnxUt78YVJBTQnbQmbf3DaL4WJj0iTXLmkz5vuYsEmyYphQQgXUGX39AF2FTfT5FLLiwCmnQO411zGkFI29mwCwvPFUZk_lH08z--r-pnfkXxMzMN8Dl9nJ3f-V5OLj573kb1AVrAA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Delaux, Alexandre</creator><creator>Saint Aubert, Jean‐Baptiste</creator><creator>Ramanoël, Stephen</creator><creator>Bécu, Marcia</creator><creator>Gehrke, Lukas</creator><creator>Klug, Marius</creator><creator>Chavarriaga, Ricardo</creator><creator>Sahel, José‐Alain</creator><creator>Gramann, Klaus</creator><creator>Arleo, Angelo</creator><creator>Solis‐Escalante, Teodoro</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8879-2860</orcidid><orcidid>https://orcid.org/0000-0003-4564-1023</orcidid><orcidid>https://orcid.org/0000-0002-1990-1971</orcidid><orcidid>https://orcid.org/0000-0003-4735-1097</orcidid><orcidid>https://orcid.org/0000-0002-4831-1153</orcidid><orcidid>https://orcid.org/0000-0003-2673-1832</orcidid><orcidid>https://orcid.org/0000-0003-3661-1973</orcidid><orcidid>https://orcid.org/0000-0002-4553-9371</orcidid><orcidid>https://orcid.org/0000-0001-8304-4989</orcidid><orcidid>https://orcid.org/0000-0001-8667-3457</orcidid></search><sort><creationdate>202112</creationdate><title>Mobile brain/body imaging of landmark‐based navigation with high‐density EEG</title><author>Delaux, Alexandre ; Saint Aubert, Jean‐Baptiste ; Ramanoël, Stephen ; Bécu, Marcia ; Gehrke, Lukas ; Klug, Marius ; Chavarriaga, Ricardo ; Sahel, José‐Alain ; Gramann, Klaus ; Arleo, Angelo ; Solis‐Escalante, Teodoro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain mapping</topic><topic>Brain Waves</topic><topic>Coding</topic><topic>Cognitive ability</topic><topic>Cognitive science</topic><topic>Computer applications</topic><topic>ecological navigation</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Information processing</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>mobile EEG</topic><topic>Navigation behavior</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Proprioception</topic><topic>retrosplenial complex</topic><topic>Sensorimotor system</topic><topic>Sensory integration</topic><topic>source reconstruction</topic><topic>Spatial discrimination learning</topic><topic>Spatial Navigation</topic><topic>Special Issue</topic><topic>Synchronization</topic><topic>virtual reality</topic><topic>Young Adult</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delaux, Alexandre</creatorcontrib><creatorcontrib>Saint Aubert, Jean‐Baptiste</creatorcontrib><creatorcontrib>Ramanoël, Stephen</creatorcontrib><creatorcontrib>Bécu, Marcia</creatorcontrib><creatorcontrib>Gehrke, Lukas</creatorcontrib><creatorcontrib>Klug, Marius</creatorcontrib><creatorcontrib>Chavarriaga, Ricardo</creatorcontrib><creatorcontrib>Sahel, José‐Alain</creatorcontrib><creatorcontrib>Gramann, Klaus</creatorcontrib><creatorcontrib>Arleo, Angelo</creatorcontrib><creatorcontrib>Solis‐Escalante, Teodoro</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delaux, Alexandre</au><au>Saint Aubert, Jean‐Baptiste</au><au>Ramanoël, Stephen</au><au>Bécu, Marcia</au><au>Gehrke, Lukas</au><au>Klug, Marius</au><au>Chavarriaga, Ricardo</au><au>Sahel, José‐Alain</au><au>Gramann, Klaus</au><au>Arleo, Angelo</au><au>Solis‐Escalante, Teodoro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile brain/body imaging of landmark‐based navigation with high‐density EEG</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2021-12</date><risdate>2021</risdate><volume>54</volume><issue>12</issue><spage>8256</spage><epage>8282</epage><pages>8256-8282</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Coupling behavioral measures and brain imaging in naturalistic, ecological conditions is key to comprehend the neural bases of spatial navigation. This highly integrative function encompasses sensorimotor, cognitive, and executive processes that jointly mediate active exploration and spatial learning. However, most neuroimaging approaches in humans are based on static, motion‐constrained paradigms and they do not account for all these processes, in particular multisensory integration. Following the Mobile Brain/Body Imaging approach, we aimed to explore the cortical correlates of landmark‐based navigation in actively behaving young adults, solving a Y‐maze task in immersive virtual reality. EEG analysis identified a set of brain areas matching state‐of‐the‐art brain imaging literature of landmark‐based navigation. Spatial behavior in mobile conditions additionally involved sensorimotor areas related to motor execution and proprioception usually overlooked in static fMRI paradigms. Expectedly, we located a cortical source in or near the posterior cingulate, in line with the engagement of the retrosplenial complex in spatial reorientation. Consistent with its role in visuo‐spatial processing and coding, we observed an alpha‐power desynchronization while participants gathered visual information. We also hypothesized behavior‐dependent modulations of the cortical signal during navigation. Despite finding few differences between the encoding and retrieval phases of the task, we identified transient time–frequency patterns attributed, for instance, to attentional demand, as reflected in the alpha/gamma range, or memory workload in the delta/theta range. We confirmed that combining mobile high‐density EEG and biometric measures can help unravel the brain structures and the neural modulations subtending ecological landmark‐based navigation. Despite the inherent mobility of natural navigation, there is only a handful of recordings of human brain activity during active exploration in space. Using Mobile Brain/Body Imaging on subjects performing landmark‐based reorientation, we retrieved exploitable neural signals in deep cortical regions and a set of visual, somatosensory, and motor areas. We discuss their neurobehavioral dynamics with respect to similar static experimental paradigms and mobile EEG correlates of locomotion control.</abstract><cop>France</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33738880</pmid><doi>10.1111/ejn.15190</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8879-2860</orcidid><orcidid>https://orcid.org/0000-0003-4564-1023</orcidid><orcidid>https://orcid.org/0000-0002-1990-1971</orcidid><orcidid>https://orcid.org/0000-0003-4735-1097</orcidid><orcidid>https://orcid.org/0000-0002-4831-1153</orcidid><orcidid>https://orcid.org/0000-0003-2673-1832</orcidid><orcidid>https://orcid.org/0000-0003-3661-1973</orcidid><orcidid>https://orcid.org/0000-0002-4553-9371</orcidid><orcidid>https://orcid.org/0000-0001-8304-4989</orcidid><orcidid>https://orcid.org/0000-0001-8667-3457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2021-12, Vol.54 (12), p.8256-8282
issn 0953-816X
1460-9568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9291975
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Brain - diagnostic imaging
Brain mapping
Brain Waves
Coding
Cognitive ability
Cognitive science
Computer applications
ecological navigation
EEG
Electroencephalography
Functional magnetic resonance imaging
Humans
Information processing
Magnetic Resonance Imaging - methods
Medical imaging
mobile EEG
Navigation behavior
Neuroimaging
Neuroscience
Proprioception
retrosplenial complex
Sensorimotor system
Sensory integration
source reconstruction
Spatial discrimination learning
Spatial Navigation
Special Issue
Synchronization
virtual reality
Young Adult
Young adults
title Mobile brain/body imaging of landmark‐based navigation with high‐density EEG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T21%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20brain/body%20imaging%20of%20landmark%E2%80%90based%20navigation%20with%20high%E2%80%90density%20EEG&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Delaux,%20Alexandre&rft.date=2021-12&rft.volume=54&rft.issue=12&rft.spage=8256&rft.epage=8282&rft.pages=8256-8282&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.15190&rft_dat=%3Cproquest_pubme%3E2503434817%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5310-3366521c3c51fa4c6728cada8ef33c933f56857c53814bbeff916b4fc28089d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616464135&rft_id=info:pmid/33738880&rfr_iscdi=true