Loading…

Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation

In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we creat...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2022-02, Vol.119 (2), p.566-574
Main Authors: Shin, Nari, Kim, Youngtaek, Ko, Jihoon, Choi, Soon Won, Hyung, Sujin, Lee, Seung‐Eun, Park, Seunghyuk, Song, Jiyoung, Jeon, Noo Li, Kang, Kyung‐Sun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03
cites cdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03
container_end_page 574
container_issue 2
container_start_page 566
container_title Biotechnology and bioengineering
container_volume 119
creator Shin, Nari
Kim, Youngtaek
Ko, Jihoon
Choi, Soon Won
Hyung, Sujin
Lee, Seung‐Eun
Park, Seunghyuk
Song, Jiyoung
Jeon, Noo Li
Kang, Kyung‐Sun
description In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease. Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.
doi_str_mv 10.1002/bit.27978
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618456804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi1ERZfCgRdAlrjAIe34T-z4ggQLtJWqcqBwtbzZCesqsYOdgMqJR-AZeRLcbrsCJA6ekcc_ffrGHyFPGBwyAH608tMh10Y398iCgdEVcAP3yQIAVCVqw_fJw5wvy1U3Sj0g-0JqpjSIBcFPLrdz75L_7iYfA40d9ecfljSPG0zRr6kP1FHxZjf49eNnDKW4ctqNH-nYu6mLaaAYNi60mGnAObmeDm4q_Vr1EdnrXJ_x8W0_IB_fvb1YnlRn749Pl6_OqlZK0VRdx2op16ypRSfVynBpGpTFq1kx7LSUTLOyMBoF4JQSQiotlVjXvEYNCOKAvNzqjvNqwHWLYSpG7Jj84NKVjc7bv1-C39jP8as13DRC1UXg-a1Ail9mzJMdfG6x713AOGfLawNMqPJ5BX32D3oZ5xTKepYr1shaNSAL9WJLtSnmnLDbmWFgr8OzJTx7E15hn_7pfkfepVWAoy3wzfd49X8l-_r0Yiv5G78ypbU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618456804</pqid></control><display><type>article</type><title>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shin, Nari ; Kim, Youngtaek ; Ko, Jihoon ; Choi, Soon Won ; Hyung, Sujin ; Lee, Seung‐Eun ; Park, Seunghyuk ; Song, Jiyoung ; Jeon, Noo Li ; Kang, Kyung‐Sun</creator><creatorcontrib>Shin, Nari ; Kim, Youngtaek ; Ko, Jihoon ; Choi, Soon Won ; Hyung, Sujin ; Lee, Seung‐Eun ; Park, Seunghyuk ; Song, Jiyoung ; Jeon, Noo Li ; Kang, Kyung‐Sun</creatorcontrib><description>In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease. Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27978</identifier><identifier>PMID: 34716703</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D spheroid ; Apoptosis ; Apoptosis - physiology ; Blood vessels ; Blood Vessels - physiology ; Brain ; Brain stem ; Cell Differentiation - physiology ; Coculture Techniques - methods ; Differentiation ; Gene expression ; Humans ; induced neural stem cell ; Lab-On-A-Chip Devices ; Maturation ; microfluidic ; Microfluidics ; Neovascularization, Physiologic - physiology ; Neural stem cells ; Neural Stem Cells - cytology ; Organoids ; Spheroids ; Spheroids, Cellular - cytology ; spheroid‐on‐a‐chip ; Stem cells ; Structure-function relationships ; Three dimensional models ; Tissue Engineering ; Vascularization</subject><ispartof>Biotechnology and bioengineering, 2022-02, Vol.119 (2), p.566-574</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC</rights><rights>2021 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</citedby><cites>FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</cites><orcidid>0000-0003-1192-0972 ; 0000-0003-0490-3592 ; 0000-0002-9322-741X ; 0000-0002-6848-0368 ; 0000-0001-8642-6093 ; 0000-0003-2353-8412 ; 0000-0002-6555-3728 ; 0000-0002-4654-5925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34716703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Nari</creatorcontrib><creatorcontrib>Kim, Youngtaek</creatorcontrib><creatorcontrib>Ko, Jihoon</creatorcontrib><creatorcontrib>Choi, Soon Won</creatorcontrib><creatorcontrib>Hyung, Sujin</creatorcontrib><creatorcontrib>Lee, Seung‐Eun</creatorcontrib><creatorcontrib>Park, Seunghyuk</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Jeon, Noo Li</creatorcontrib><creatorcontrib>Kang, Kyung‐Sun</creatorcontrib><title>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease. Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.</description><subject>3D spheroid</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Blood vessels</subject><subject>Blood Vessels - physiology</subject><subject>Brain</subject><subject>Brain stem</subject><subject>Cell Differentiation - physiology</subject><subject>Coculture Techniques - methods</subject><subject>Differentiation</subject><subject>Gene expression</subject><subject>Humans</subject><subject>induced neural stem cell</subject><subject>Lab-On-A-Chip Devices</subject><subject>Maturation</subject><subject>microfluidic</subject><subject>Microfluidics</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Organoids</subject><subject>Spheroids</subject><subject>Spheroids, Cellular - cytology</subject><subject>spheroid‐on‐a‐chip</subject><subject>Stem cells</subject><subject>Structure-function relationships</subject><subject>Three dimensional models</subject><subject>Tissue Engineering</subject><subject>Vascularization</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc9u1DAQxi1ERZfCgRdAlrjAIe34T-z4ggQLtJWqcqBwtbzZCesqsYOdgMqJR-AZeRLcbrsCJA6ekcc_ffrGHyFPGBwyAH608tMh10Y398iCgdEVcAP3yQIAVCVqw_fJw5wvy1U3Sj0g-0JqpjSIBcFPLrdz75L_7iYfA40d9ecfljSPG0zRr6kP1FHxZjf49eNnDKW4ctqNH-nYu6mLaaAYNi60mGnAObmeDm4q_Vr1EdnrXJ_x8W0_IB_fvb1YnlRn749Pl6_OqlZK0VRdx2op16ypRSfVynBpGpTFq1kx7LSUTLOyMBoF4JQSQiotlVjXvEYNCOKAvNzqjvNqwHWLYSpG7Jj84NKVjc7bv1-C39jP8as13DRC1UXg-a1Ail9mzJMdfG6x713AOGfLawNMqPJ5BX32D3oZ5xTKepYr1shaNSAL9WJLtSnmnLDbmWFgr8OzJTx7E15hn_7pfkfepVWAoy3wzfd49X8l-_r0Yiv5G78ypbU</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Shin, Nari</creator><creator>Kim, Youngtaek</creator><creator>Ko, Jihoon</creator><creator>Choi, Soon Won</creator><creator>Hyung, Sujin</creator><creator>Lee, Seung‐Eun</creator><creator>Park, Seunghyuk</creator><creator>Song, Jiyoung</creator><creator>Jeon, Noo Li</creator><creator>Kang, Kyung‐Sun</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1192-0972</orcidid><orcidid>https://orcid.org/0000-0003-0490-3592</orcidid><orcidid>https://orcid.org/0000-0002-9322-741X</orcidid><orcidid>https://orcid.org/0000-0002-6848-0368</orcidid><orcidid>https://orcid.org/0000-0001-8642-6093</orcidid><orcidid>https://orcid.org/0000-0003-2353-8412</orcidid><orcidid>https://orcid.org/0000-0002-6555-3728</orcidid><orcidid>https://orcid.org/0000-0002-4654-5925</orcidid></search><sort><creationdate>202202</creationdate><title>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</title><author>Shin, Nari ; Kim, Youngtaek ; Ko, Jihoon ; Choi, Soon Won ; Hyung, Sujin ; Lee, Seung‐Eun ; Park, Seunghyuk ; Song, Jiyoung ; Jeon, Noo Li ; Kang, Kyung‐Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D spheroid</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Blood vessels</topic><topic>Blood Vessels - physiology</topic><topic>Brain</topic><topic>Brain stem</topic><topic>Cell Differentiation - physiology</topic><topic>Coculture Techniques - methods</topic><topic>Differentiation</topic><topic>Gene expression</topic><topic>Humans</topic><topic>induced neural stem cell</topic><topic>Lab-On-A-Chip Devices</topic><topic>Maturation</topic><topic>microfluidic</topic><topic>Microfluidics</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Organoids</topic><topic>Spheroids</topic><topic>Spheroids, Cellular - cytology</topic><topic>spheroid‐on‐a‐chip</topic><topic>Stem cells</topic><topic>Structure-function relationships</topic><topic>Three dimensional models</topic><topic>Tissue Engineering</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Nari</creatorcontrib><creatorcontrib>Kim, Youngtaek</creatorcontrib><creatorcontrib>Ko, Jihoon</creatorcontrib><creatorcontrib>Choi, Soon Won</creatorcontrib><creatorcontrib>Hyung, Sujin</creatorcontrib><creatorcontrib>Lee, Seung‐Eun</creatorcontrib><creatorcontrib>Park, Seunghyuk</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Jeon, Noo Li</creatorcontrib><creatorcontrib>Kang, Kyung‐Sun</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Nari</au><au>Kim, Youngtaek</au><au>Ko, Jihoon</au><au>Choi, Soon Won</au><au>Hyung, Sujin</au><au>Lee, Seung‐Eun</au><au>Park, Seunghyuk</au><au>Song, Jiyoung</au><au>Jeon, Noo Li</au><au>Kang, Kyung‐Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2022-02</date><risdate>2022</risdate><volume>119</volume><issue>2</issue><spage>566</spage><epage>574</epage><pages>566-574</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease. Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34716703</pmid><doi>10.1002/bit.27978</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1192-0972</orcidid><orcidid>https://orcid.org/0000-0003-0490-3592</orcidid><orcidid>https://orcid.org/0000-0002-9322-741X</orcidid><orcidid>https://orcid.org/0000-0002-6848-0368</orcidid><orcidid>https://orcid.org/0000-0001-8642-6093</orcidid><orcidid>https://orcid.org/0000-0003-2353-8412</orcidid><orcidid>https://orcid.org/0000-0002-6555-3728</orcidid><orcidid>https://orcid.org/0000-0002-4654-5925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2022-02, Vol.119 (2), p.566-574
issn 0006-3592
1097-0290
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298365
source Wiley-Blackwell Read & Publish Collection
subjects 3D spheroid
Apoptosis
Apoptosis - physiology
Blood vessels
Blood Vessels - physiology
Brain
Brain stem
Cell Differentiation - physiology
Coculture Techniques - methods
Differentiation
Gene expression
Humans
induced neural stem cell
Lab-On-A-Chip Devices
Maturation
microfluidic
Microfluidics
Neovascularization, Physiologic - physiology
Neural stem cells
Neural Stem Cells - cytology
Organoids
Spheroids
Spheroids, Cellular - cytology
spheroid‐on‐a‐chip
Stem cells
Structure-function relationships
Three dimensional models
Tissue Engineering
Vascularization
title Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascularization%20of%20iNSC%20spheroid%20in%20a%203D%20spheroid%E2%80%90on%E2%80%90a%E2%80%90chip%20platform%20enhances%20neural%20maturation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Shin,%20Nari&rft.date=2022-02&rft.volume=119&rft.issue=2&rft.spage=566&rft.epage=574&rft.pages=566-574&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27978&rft_dat=%3Cproquest_pubme%3E2618456804%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618456804&rft_id=info:pmid/34716703&rfr_iscdi=true