Loading…
Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation
In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we creat...
Saved in:
Published in: | Biotechnology and bioengineering 2022-02, Vol.119 (2), p.566-574 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03 |
container_end_page | 574 |
container_issue | 2 |
container_start_page | 566 |
container_title | Biotechnology and bioengineering |
container_volume | 119 |
creator | Shin, Nari Kim, Youngtaek Ko, Jihoon Choi, Soon Won Hyung, Sujin Lee, Seung‐Eun Park, Seunghyuk Song, Jiyoung Jeon, Noo Li Kang, Kyung‐Sun |
description | In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease.
Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases. |
doi_str_mv | 10.1002/bit.27978 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618456804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi1ERZfCgRdAlrjAIe34T-z4ggQLtJWqcqBwtbzZCesqsYOdgMqJR-AZeRLcbrsCJA6ekcc_ffrGHyFPGBwyAH608tMh10Y398iCgdEVcAP3yQIAVCVqw_fJw5wvy1U3Sj0g-0JqpjSIBcFPLrdz75L_7iYfA40d9ecfljSPG0zRr6kP1FHxZjf49eNnDKW4ctqNH-nYu6mLaaAYNi60mGnAObmeDm4q_Vr1EdnrXJ_x8W0_IB_fvb1YnlRn749Pl6_OqlZK0VRdx2op16ypRSfVynBpGpTFq1kx7LSUTLOyMBoF4JQSQiotlVjXvEYNCOKAvNzqjvNqwHWLYSpG7Jj84NKVjc7bv1-C39jP8as13DRC1UXg-a1Ail9mzJMdfG6x713AOGfLawNMqPJ5BX32D3oZ5xTKepYr1shaNSAL9WJLtSnmnLDbmWFgr8OzJTx7E15hn_7pfkfepVWAoy3wzfd49X8l-_r0Yiv5G78ypbU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618456804</pqid></control><display><type>article</type><title>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shin, Nari ; Kim, Youngtaek ; Ko, Jihoon ; Choi, Soon Won ; Hyung, Sujin ; Lee, Seung‐Eun ; Park, Seunghyuk ; Song, Jiyoung ; Jeon, Noo Li ; Kang, Kyung‐Sun</creator><creatorcontrib>Shin, Nari ; Kim, Youngtaek ; Ko, Jihoon ; Choi, Soon Won ; Hyung, Sujin ; Lee, Seung‐Eun ; Park, Seunghyuk ; Song, Jiyoung ; Jeon, Noo Li ; Kang, Kyung‐Sun</creatorcontrib><description>In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease.
Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27978</identifier><identifier>PMID: 34716703</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D spheroid ; Apoptosis ; Apoptosis - physiology ; Blood vessels ; Blood Vessels - physiology ; Brain ; Brain stem ; Cell Differentiation - physiology ; Coculture Techniques - methods ; Differentiation ; Gene expression ; Humans ; induced neural stem cell ; Lab-On-A-Chip Devices ; Maturation ; microfluidic ; Microfluidics ; Neovascularization, Physiologic - physiology ; Neural stem cells ; Neural Stem Cells - cytology ; Organoids ; Spheroids ; Spheroids, Cellular - cytology ; spheroid‐on‐a‐chip ; Stem cells ; Structure-function relationships ; Three dimensional models ; Tissue Engineering ; Vascularization</subject><ispartof>Biotechnology and bioengineering, 2022-02, Vol.119 (2), p.566-574</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC</rights><rights>2021 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</citedby><cites>FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</cites><orcidid>0000-0003-1192-0972 ; 0000-0003-0490-3592 ; 0000-0002-9322-741X ; 0000-0002-6848-0368 ; 0000-0001-8642-6093 ; 0000-0003-2353-8412 ; 0000-0002-6555-3728 ; 0000-0002-4654-5925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34716703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Nari</creatorcontrib><creatorcontrib>Kim, Youngtaek</creatorcontrib><creatorcontrib>Ko, Jihoon</creatorcontrib><creatorcontrib>Choi, Soon Won</creatorcontrib><creatorcontrib>Hyung, Sujin</creatorcontrib><creatorcontrib>Lee, Seung‐Eun</creatorcontrib><creatorcontrib>Park, Seunghyuk</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Jeon, Noo Li</creatorcontrib><creatorcontrib>Kang, Kyung‐Sun</creatorcontrib><title>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease.
Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.</description><subject>3D spheroid</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Blood vessels</subject><subject>Blood Vessels - physiology</subject><subject>Brain</subject><subject>Brain stem</subject><subject>Cell Differentiation - physiology</subject><subject>Coculture Techniques - methods</subject><subject>Differentiation</subject><subject>Gene expression</subject><subject>Humans</subject><subject>induced neural stem cell</subject><subject>Lab-On-A-Chip Devices</subject><subject>Maturation</subject><subject>microfluidic</subject><subject>Microfluidics</subject><subject>Neovascularization, Physiologic - physiology</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Organoids</subject><subject>Spheroids</subject><subject>Spheroids, Cellular - cytology</subject><subject>spheroid‐on‐a‐chip</subject><subject>Stem cells</subject><subject>Structure-function relationships</subject><subject>Three dimensional models</subject><subject>Tissue Engineering</subject><subject>Vascularization</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc9u1DAQxi1ERZfCgRdAlrjAIe34T-z4ggQLtJWqcqBwtbzZCesqsYOdgMqJR-AZeRLcbrsCJA6ekcc_ffrGHyFPGBwyAH608tMh10Y398iCgdEVcAP3yQIAVCVqw_fJw5wvy1U3Sj0g-0JqpjSIBcFPLrdz75L_7iYfA40d9ecfljSPG0zRr6kP1FHxZjf49eNnDKW4ctqNH-nYu6mLaaAYNi60mGnAObmeDm4q_Vr1EdnrXJ_x8W0_IB_fvb1YnlRn749Pl6_OqlZK0VRdx2op16ypRSfVynBpGpTFq1kx7LSUTLOyMBoF4JQSQiotlVjXvEYNCOKAvNzqjvNqwHWLYSpG7Jj84NKVjc7bv1-C39jP8as13DRC1UXg-a1Ail9mzJMdfG6x713AOGfLawNMqPJ5BX32D3oZ5xTKepYr1shaNSAL9WJLtSnmnLDbmWFgr8OzJTx7E15hn_7pfkfepVWAoy3wzfd49X8l-_r0Yiv5G78ypbU</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Shin, Nari</creator><creator>Kim, Youngtaek</creator><creator>Ko, Jihoon</creator><creator>Choi, Soon Won</creator><creator>Hyung, Sujin</creator><creator>Lee, Seung‐Eun</creator><creator>Park, Seunghyuk</creator><creator>Song, Jiyoung</creator><creator>Jeon, Noo Li</creator><creator>Kang, Kyung‐Sun</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1192-0972</orcidid><orcidid>https://orcid.org/0000-0003-0490-3592</orcidid><orcidid>https://orcid.org/0000-0002-9322-741X</orcidid><orcidid>https://orcid.org/0000-0002-6848-0368</orcidid><orcidid>https://orcid.org/0000-0001-8642-6093</orcidid><orcidid>https://orcid.org/0000-0003-2353-8412</orcidid><orcidid>https://orcid.org/0000-0002-6555-3728</orcidid><orcidid>https://orcid.org/0000-0002-4654-5925</orcidid></search><sort><creationdate>202202</creationdate><title>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</title><author>Shin, Nari ; Kim, Youngtaek ; Ko, Jihoon ; Choi, Soon Won ; Hyung, Sujin ; Lee, Seung‐Eun ; Park, Seunghyuk ; Song, Jiyoung ; Jeon, Noo Li ; Kang, Kyung‐Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D spheroid</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Blood vessels</topic><topic>Blood Vessels - physiology</topic><topic>Brain</topic><topic>Brain stem</topic><topic>Cell Differentiation - physiology</topic><topic>Coculture Techniques - methods</topic><topic>Differentiation</topic><topic>Gene expression</topic><topic>Humans</topic><topic>induced neural stem cell</topic><topic>Lab-On-A-Chip Devices</topic><topic>Maturation</topic><topic>microfluidic</topic><topic>Microfluidics</topic><topic>Neovascularization, Physiologic - physiology</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Organoids</topic><topic>Spheroids</topic><topic>Spheroids, Cellular - cytology</topic><topic>spheroid‐on‐a‐chip</topic><topic>Stem cells</topic><topic>Structure-function relationships</topic><topic>Three dimensional models</topic><topic>Tissue Engineering</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Nari</creatorcontrib><creatorcontrib>Kim, Youngtaek</creatorcontrib><creatorcontrib>Ko, Jihoon</creatorcontrib><creatorcontrib>Choi, Soon Won</creatorcontrib><creatorcontrib>Hyung, Sujin</creatorcontrib><creatorcontrib>Lee, Seung‐Eun</creatorcontrib><creatorcontrib>Park, Seunghyuk</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Jeon, Noo Li</creatorcontrib><creatorcontrib>Kang, Kyung‐Sun</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Nari</au><au>Kim, Youngtaek</au><au>Ko, Jihoon</au><au>Choi, Soon Won</au><au>Hyung, Sujin</au><au>Lee, Seung‐Eun</au><au>Park, Seunghyuk</au><au>Song, Jiyoung</au><au>Jeon, Noo Li</au><au>Kang, Kyung‐Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2022-02</date><risdate>2022</risdate><volume>119</volume><issue>2</issue><spage>566</spage><epage>574</epage><pages>566-574</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three‐dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection‐molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease.
Current organoid models lack 3D vascular networks, limiting proliferation and differentiation of organoid. In this study, we developed a 3D model of vascularized iNSC spheroids using an injection‐molded microfluidic chip. The vascular network in chip was perfusable and in contact with neural spheroid. Furthermore, vascularized neural spheroids showed enhanced differentiation and reduced apoptosis. We suggest that this model could be applied to the organoids‐on‐a‐chip model, and it would be a powerful tool for understanding of developmental biology and human diseases.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34716703</pmid><doi>10.1002/bit.27978</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1192-0972</orcidid><orcidid>https://orcid.org/0000-0003-0490-3592</orcidid><orcidid>https://orcid.org/0000-0002-9322-741X</orcidid><orcidid>https://orcid.org/0000-0002-6848-0368</orcidid><orcidid>https://orcid.org/0000-0001-8642-6093</orcidid><orcidid>https://orcid.org/0000-0003-2353-8412</orcidid><orcidid>https://orcid.org/0000-0002-6555-3728</orcidid><orcidid>https://orcid.org/0000-0002-4654-5925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2022-02, Vol.119 (2), p.566-574 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298365 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 3D spheroid Apoptosis Apoptosis - physiology Blood vessels Blood Vessels - physiology Brain Brain stem Cell Differentiation - physiology Coculture Techniques - methods Differentiation Gene expression Humans induced neural stem cell Lab-On-A-Chip Devices Maturation microfluidic Microfluidics Neovascularization, Physiologic - physiology Neural stem cells Neural Stem Cells - cytology Organoids Spheroids Spheroids, Cellular - cytology spheroid‐on‐a‐chip Stem cells Structure-function relationships Three dimensional models Tissue Engineering Vascularization |
title | Vascularization of iNSC spheroid in a 3D spheroid‐on‐a‐chip platform enhances neural maturation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascularization%20of%20iNSC%20spheroid%20in%20a%203D%20spheroid%E2%80%90on%E2%80%90a%E2%80%90chip%20platform%20enhances%20neural%20maturation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Shin,%20Nari&rft.date=2022-02&rft.volume=119&rft.issue=2&rft.spage=566&rft.epage=574&rft.pages=566-574&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27978&rft_dat=%3Cproquest_pubme%3E2618456804%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4438-ff1544d1853f46b92498e44719b1ef744171100e9600a6633467463d525e70e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618456804&rft_id=info:pmid/34716703&rfr_iscdi=true |