Loading…

Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter

Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible stat...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2022-07, Vol.50 (13), p.7511-7528
Main Authors: Bera, Subhas C, America, Pim P B, Maatsola, Santeri, Seifert, Mona, Ostrofet, Eugeniu, Cnossen, Jelmer, Spermann, Monika, Papini, Flávia S, Depken, Martin, Malinen, Anssi M, Dulin, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53
cites cdi_FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53
container_end_page 7528
container_issue 13
container_start_page 7511
container_title Nucleic acids research
container_volume 50
creator Bera, Subhas C
America, Pim P B
Maatsola, Santeri
Seifert, Mona
Ostrofet, Eugeniu
Cnossen, Jelmer
Spermann, Monika
Papini, Flávia S
Depken, Martin
Malinen, Anssi M
Dulin, David
description Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein–DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with $\sigma$ and the RNAP $\beta$ subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.
doi_str_mv 10.1093/nar/gkac560
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688570226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53</originalsourceid><addsrcrecordid>eNpVUctO3TAQtVBRuaVd8QNeIpWAHSe-9qYSQvQhIVArWFsTZ0xdEju1EwTs-id8S78MA1eVqlnMnHmcGc0hZI-zQ860OAqQjq5vwLaSbZEVF7KuGi3rN2TFBGsrzhq1Q97l_Isx3vC2eUt2RKu4LrYif74vEGY_w-xvkU6QYMQZU6bR0Q5sCT0M9Mf5MZ3icD9igow0ThgqG8dpwDvqYhrLdAwHNM_Q-cE_vEAKoae9z2mZXuBz5u-jjSFjyEumU4pjLPzvybaDIeOHjd8lV59PL0--VmcXX76dHJ9Vtlw7V1aBdjVfo2NirZWqmVa1RQdds1bW9a6TTgM2wJWQPedSt7q8pxNSqpZ1rdgln155p6UbsbcY5gSDmZIfId2bCN78Xwn-p7mOt0YLJhrWFIL9DUGKvxfMsxl9tjgMEDAu2dRSqXbN6lqW1o-vrTbFnBO6f2s4M8-imSKa2YgmngCBI4-G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688570226</pqid></control><display><type>article</type><title>Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter</title><source>Oxford Open</source><source>PubMed Central</source><creator>Bera, Subhas C ; America, Pim P B ; Maatsola, Santeri ; Seifert, Mona ; Ostrofet, Eugeniu ; Cnossen, Jelmer ; Spermann, Monika ; Papini, Flávia S ; Depken, Martin ; Malinen, Anssi M ; Dulin, David</creator><creatorcontrib>Bera, Subhas C ; America, Pim P B ; Maatsola, Santeri ; Seifert, Mona ; Ostrofet, Eugeniu ; Cnossen, Jelmer ; Spermann, Monika ; Papini, Flávia S ; Depken, Martin ; Malinen, Anssi M ; Dulin, David</creatorcontrib><description>Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein–DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with $\sigma$ and the RNAP $\beta$ subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkac560</identifier><identifier>PMID: 35819191</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Nucleic Acid Enzymes</subject><ispartof>Nucleic acids research, 2022-07, Vol.50 (13), p.7511-7528</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53</citedby><cites>FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53</cites><orcidid>0000-0003-4209-0377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303404/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Bera, Subhas C</creatorcontrib><creatorcontrib>America, Pim P B</creatorcontrib><creatorcontrib>Maatsola, Santeri</creatorcontrib><creatorcontrib>Seifert, Mona</creatorcontrib><creatorcontrib>Ostrofet, Eugeniu</creatorcontrib><creatorcontrib>Cnossen, Jelmer</creatorcontrib><creatorcontrib>Spermann, Monika</creatorcontrib><creatorcontrib>Papini, Flávia S</creatorcontrib><creatorcontrib>Depken, Martin</creatorcontrib><creatorcontrib>Malinen, Anssi M</creatorcontrib><creatorcontrib>Dulin, David</creatorcontrib><title>Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter</title><title>Nucleic acids research</title><description>Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein–DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with $\sigma$ and the RNAP $\beta$ subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.</description><subject>Nucleic Acid Enzymes</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUctO3TAQtVBRuaVd8QNeIpWAHSe-9qYSQvQhIVArWFsTZ0xdEju1EwTs-id8S78MA1eVqlnMnHmcGc0hZI-zQ860OAqQjq5vwLaSbZEVF7KuGi3rN2TFBGsrzhq1Q97l_Isx3vC2eUt2RKu4LrYif74vEGY_w-xvkU6QYMQZU6bR0Q5sCT0M9Mf5MZ3icD9igow0ThgqG8dpwDvqYhrLdAwHNM_Q-cE_vEAKoae9z2mZXuBz5u-jjSFjyEumU4pjLPzvybaDIeOHjd8lV59PL0--VmcXX76dHJ9Vtlw7V1aBdjVfo2NirZWqmVa1RQdds1bW9a6TTgM2wJWQPedSt7q8pxNSqpZ1rdgln155p6UbsbcY5gSDmZIfId2bCN78Xwn-p7mOt0YLJhrWFIL9DUGKvxfMsxl9tjgMEDAu2dRSqXbN6lqW1o-vrTbFnBO6f2s4M8-imSKa2YgmngCBI4-G</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Bera, Subhas C</creator><creator>America, Pim P B</creator><creator>Maatsola, Santeri</creator><creator>Seifert, Mona</creator><creator>Ostrofet, Eugeniu</creator><creator>Cnossen, Jelmer</creator><creator>Spermann, Monika</creator><creator>Papini, Flávia S</creator><creator>Depken, Martin</creator><creator>Malinen, Anssi M</creator><creator>Dulin, David</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4209-0377</orcidid></search><sort><creationdate>20220722</creationdate><title>Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter</title><author>Bera, Subhas C ; America, Pim P B ; Maatsola, Santeri ; Seifert, Mona ; Ostrofet, Eugeniu ; Cnossen, Jelmer ; Spermann, Monika ; Papini, Flávia S ; Depken, Martin ; Malinen, Anssi M ; Dulin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Nucleic Acid Enzymes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Subhas C</creatorcontrib><creatorcontrib>America, Pim P B</creatorcontrib><creatorcontrib>Maatsola, Santeri</creatorcontrib><creatorcontrib>Seifert, Mona</creatorcontrib><creatorcontrib>Ostrofet, Eugeniu</creatorcontrib><creatorcontrib>Cnossen, Jelmer</creatorcontrib><creatorcontrib>Spermann, Monika</creatorcontrib><creatorcontrib>Papini, Flávia S</creatorcontrib><creatorcontrib>Depken, Martin</creatorcontrib><creatorcontrib>Malinen, Anssi M</creatorcontrib><creatorcontrib>Dulin, David</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Subhas C</au><au>America, Pim P B</au><au>Maatsola, Santeri</au><au>Seifert, Mona</au><au>Ostrofet, Eugeniu</au><au>Cnossen, Jelmer</au><au>Spermann, Monika</au><au>Papini, Flávia S</au><au>Depken, Martin</au><au>Malinen, Anssi M</au><au>Dulin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter</atitle><jtitle>Nucleic acids research</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>50</volume><issue>13</issue><spage>7511</spage><epage>7528</epage><pages>7511-7528</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor $\sigma$ to form a holoenzyme, which binds, bends and opens the promoter in a succession of reversible states. These states are critical for transcription regulation, but remain poorly understood. Here, we addressed the mechanism of open complex formation by monitoring its assembly/disassembly kinetics on individual consensus lacUV5 promoters using high-throughput single-molecule magnetic tweezers. We probed the key protein–DNA interactions governing the open-complex formation and dissociation pathway by modulating the dynamics at different concentrations of monovalent salts and varying temperatures. Consistent with ensemble studies, we observed that RNAP-promoter open (RPO) complex is a stable, slowly reversible state that is preceded by a kinetically significant open intermediate (RPI), from which the holoenzyme dissociates. A strong anion concentration and type dependence indicates that the RPO stabilization may involve sequence-independent interactions between the DNA and the holoenzyme, driven by a non-Coulombic effect consistent with the non-template DNA strand interacting with $\sigma$ and the RNAP $\beta$ subunit. The temperature dependence provides the energy scale of open-complex formation and further supports the existence of additional intermediates.</abstract><pub>Oxford University Press</pub><pmid>35819191</pmid><doi>10.1093/nar/gkac560</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4209-0377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2022-07, Vol.50 (13), p.7511-7528
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303404
source Oxford Open; PubMed Central
subjects Nucleic Acid Enzymes
title Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20parameters%20of%20bacterial%20RNA%20polymerase%20open-complex%20formation,%20stabilization%20and%20disruption%20on%20a%C2%A0consensus%20promoter&rft.jtitle=Nucleic%20acids%20research&rft.au=Bera,%20Subhas%20C&rft.date=2022-07-22&rft.volume=50&rft.issue=13&rft.spage=7511&rft.epage=7528&rft.pages=7511-7528&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkac560&rft_dat=%3Cproquest_pubme%3E2688570226%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-c8a9f217ef03798820982cefab478cfdfb6f9ae4a1836d116959109b366850b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688570226&rft_id=info:pmid/35819191&rfr_iscdi=true