Loading…
Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage
A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining s...
Saved in:
Published in: | Angewandte Chemie International Edition 2022-02, Vol.61 (9), p.e202115468-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | e202115468 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Birvé, André P. Patel, Harshal D. Price, Jason R. Bloch, Witold M. Fallon, Thomas |
description | A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly.
The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems. |
doi_str_mv | 10.1002/anie.202115468 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605597430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</originalsourceid><addsrcrecordid>eNqFkc1O4zAYRS3EaIDObFmiSGzYpOPfxN4gVaWFSmh-pJm15SRfOqkSu9gN0B2PwDPyJLgqdBg2rGzLx0ff9UXomOAhwZh-M7aBIcWUEMEzuYcOiaAkZXnO9uOeM5bmUpADdBTCIvJS4uwzOmBcCk4UOUS_LnsIq6eHxwtYgq3ArpJZcB34ZOzsLfg52BISVycm-Qm-MzYS7TqZtv1946xpI-Z81VizisdkbObwBX2qTRvg68s6QH-mk9_jq_T6x-VsPLpOyzioTOuKMwWyKIQErpgQmFDGi4xBDTI3mZA5NoVROaiipFWJsWKgJMUlN0xUgg3Q-da77IsOqjIO5k2rl77pjF9rZxr9_41t_uq5u9WKYcYpi4KzF4F3N5tf0F0TSmjbGNL1QdMMC6FyHvEBOn2HLlzvY_wNRaWiVETjAA23VOldCB7q3TAE601betOW3rUVH5y8jbDDX-uJgNoCd00L6w90evR9NvknfwYv06Kb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628922542</pqid></control><display><type>article</type><title>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Birvé, André P. ; Patel, Harshal D. ; Price, Jason R. ; Bloch, Witold M. ; Fallon, Thomas</creator><creatorcontrib>Birvé, André P. ; Patel, Harshal D. ; Price, Jason R. ; Bloch, Witold M. ; Fallon, Thomas</creatorcontrib><description>A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly.
The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202115468</identifier><identifier>PMID: 34854191</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Cages ; Communication ; Communications ; Complexity ; Convergence ; Coordination ; Coordination cage ; Crystallography ; Diastereoisomers ; Enantiomers ; Fluxional molecule ; Halides ; Host-guest chemistry ; Isomerization ; Ligands ; Magnetic resonance spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Self-assembly</subject><ispartof>Angewandte Chemie International Edition, 2022-02, Vol.61 (9), p.e202115468-n/a</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</citedby><cites>FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</cites><orcidid>0000-0002-6495-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34854191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birvé, André P.</creatorcontrib><creatorcontrib>Patel, Harshal D.</creatorcontrib><creatorcontrib>Price, Jason R.</creatorcontrib><creatorcontrib>Bloch, Witold M.</creatorcontrib><creatorcontrib>Fallon, Thomas</creatorcontrib><title>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly.
The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.</description><subject>Assembly</subject><subject>Cages</subject><subject>Communication</subject><subject>Communications</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Coordination</subject><subject>Coordination cage</subject><subject>Crystallography</subject><subject>Diastereoisomers</subject><subject>Enantiomers</subject><subject>Fluxional molecule</subject><subject>Halides</subject><subject>Host-guest chemistry</subject><subject>Isomerization</subject><subject>Ligands</subject><subject>Magnetic resonance spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Self-assembly</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O4zAYRS3EaIDObFmiSGzYpOPfxN4gVaWFSmh-pJm15SRfOqkSu9gN0B2PwDPyJLgqdBg2rGzLx0ff9UXomOAhwZh-M7aBIcWUEMEzuYcOiaAkZXnO9uOeM5bmUpADdBTCIvJS4uwzOmBcCk4UOUS_LnsIq6eHxwtYgq3ArpJZcB34ZOzsLfg52BISVycm-Qm-MzYS7TqZtv1946xpI-Z81VizisdkbObwBX2qTRvg68s6QH-mk9_jq_T6x-VsPLpOyzioTOuKMwWyKIQErpgQmFDGi4xBDTI3mZA5NoVROaiipFWJsWKgJMUlN0xUgg3Q-da77IsOqjIO5k2rl77pjF9rZxr9_41t_uq5u9WKYcYpi4KzF4F3N5tf0F0TSmjbGNL1QdMMC6FyHvEBOn2HLlzvY_wNRaWiVETjAA23VOldCB7q3TAE601betOW3rUVH5y8jbDDX-uJgNoCd00L6w90evR9NvknfwYv06Kb</recordid><startdate>20220221</startdate><enddate>20220221</enddate><creator>Birvé, André P.</creator><creator>Patel, Harshal D.</creator><creator>Price, Jason R.</creator><creator>Bloch, Witold M.</creator><creator>Fallon, Thomas</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6495-5282</orcidid></search><sort><creationdate>20220221</creationdate><title>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</title><author>Birvé, André P. ; Patel, Harshal D. ; Price, Jason R. ; Bloch, Witold M. ; Fallon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Cages</topic><topic>Communication</topic><topic>Communications</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Coordination</topic><topic>Coordination cage</topic><topic>Crystallography</topic><topic>Diastereoisomers</topic><topic>Enantiomers</topic><topic>Fluxional molecule</topic><topic>Halides</topic><topic>Host-guest chemistry</topic><topic>Isomerization</topic><topic>Ligands</topic><topic>Magnetic resonance spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birvé, André P.</creatorcontrib><creatorcontrib>Patel, Harshal D.</creatorcontrib><creatorcontrib>Price, Jason R.</creatorcontrib><creatorcontrib>Bloch, Witold M.</creatorcontrib><creatorcontrib>Fallon, Thomas</creatorcontrib><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birvé, André P.</au><au>Patel, Harshal D.</au><au>Price, Jason R.</au><au>Bloch, Witold M.</au><au>Fallon, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-02-21</date><risdate>2022</risdate><volume>61</volume><issue>9</issue><spage>e202115468</spage><epage>n/a</epage><pages>e202115468-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly.
The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34854191</pmid><doi>10.1002/anie.202115468</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6495-5282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-02, Vol.61 (9), p.e202115468-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303423 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Assembly Cages Communication Communications Complexity Convergence Coordination Coordination cage Crystallography Diastereoisomers Enantiomers Fluxional molecule Halides Host-guest chemistry Isomerization Ligands Magnetic resonance spectroscopy NMR NMR spectroscopy Nuclear magnetic resonance Self-assembly |
title | Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guest%E2%80%90Dependent%20Isomer%20Convergence%20of%20a%20Permanently%20Fluxional%20Coordination%20Cage&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Birv%C3%A9,%20Andr%C3%A9%20P.&rft.date=2022-02-21&rft.volume=61&rft.issue=9&rft.spage=e202115468&rft.epage=n/a&rft.pages=e202115468-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202115468&rft_dat=%3Cproquest_pubme%3E2605597430%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628922542&rft_id=info:pmid/34854191&rfr_iscdi=true |