Loading…

Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage

A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining s...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2022-02, Vol.61 (9), p.e202115468-n/a
Main Authors: Birvé, André P., Patel, Harshal D., Price, Jason R., Bloch, Witold M., Fallon, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53
cites cdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53
container_end_page n/a
container_issue 9
container_start_page e202115468
container_title Angewandte Chemie International Edition
container_volume 61
creator Birvé, André P.
Patel, Harshal D.
Price, Jason R.
Bloch, Witold M.
Fallon, Thomas
description A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly. The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.
doi_str_mv 10.1002/anie.202115468
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605597430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</originalsourceid><addsrcrecordid>eNqFkc1O4zAYRS3EaIDObFmiSGzYpOPfxN4gVaWFSmh-pJm15SRfOqkSu9gN0B2PwDPyJLgqdBg2rGzLx0ff9UXomOAhwZh-M7aBIcWUEMEzuYcOiaAkZXnO9uOeM5bmUpADdBTCIvJS4uwzOmBcCk4UOUS_LnsIq6eHxwtYgq3ArpJZcB34ZOzsLfg52BISVycm-Qm-MzYS7TqZtv1946xpI-Z81VizisdkbObwBX2qTRvg68s6QH-mk9_jq_T6x-VsPLpOyzioTOuKMwWyKIQErpgQmFDGi4xBDTI3mZA5NoVROaiipFWJsWKgJMUlN0xUgg3Q-da77IsOqjIO5k2rl77pjF9rZxr9_41t_uq5u9WKYcYpi4KzF4F3N5tf0F0TSmjbGNL1QdMMC6FyHvEBOn2HLlzvY_wNRaWiVETjAA23VOldCB7q3TAE601betOW3rUVH5y8jbDDX-uJgNoCd00L6w90evR9NvknfwYv06Kb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628922542</pqid></control><display><type>article</type><title>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Birvé, André P. ; Patel, Harshal D. ; Price, Jason R. ; Bloch, Witold M. ; Fallon, Thomas</creator><creatorcontrib>Birvé, André P. ; Patel, Harshal D. ; Price, Jason R. ; Bloch, Witold M. ; Fallon, Thomas</creatorcontrib><description>A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly. The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202115468</identifier><identifier>PMID: 34854191</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Cages ; Communication ; Communications ; Complexity ; Convergence ; Coordination ; Coordination cage ; Crystallography ; Diastereoisomers ; Enantiomers ; Fluxional molecule ; Halides ; Host-guest chemistry ; Isomerization ; Ligands ; Magnetic resonance spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Self-assembly</subject><ispartof>Angewandte Chemie International Edition, 2022-02, Vol.61 (9), p.e202115468-n/a</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</citedby><cites>FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</cites><orcidid>0000-0002-6495-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34854191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Birvé, André P.</creatorcontrib><creatorcontrib>Patel, Harshal D.</creatorcontrib><creatorcontrib>Price, Jason R.</creatorcontrib><creatorcontrib>Bloch, Witold M.</creatorcontrib><creatorcontrib>Fallon, Thomas</creatorcontrib><title>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly. The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.</description><subject>Assembly</subject><subject>Cages</subject><subject>Communication</subject><subject>Communications</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Coordination</subject><subject>Coordination cage</subject><subject>Crystallography</subject><subject>Diastereoisomers</subject><subject>Enantiomers</subject><subject>Fluxional molecule</subject><subject>Halides</subject><subject>Host-guest chemistry</subject><subject>Isomerization</subject><subject>Ligands</subject><subject>Magnetic resonance spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Self-assembly</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O4zAYRS3EaIDObFmiSGzYpOPfxN4gVaWFSmh-pJm15SRfOqkSu9gN0B2PwDPyJLgqdBg2rGzLx0ff9UXomOAhwZh-M7aBIcWUEMEzuYcOiaAkZXnO9uOeM5bmUpADdBTCIvJS4uwzOmBcCk4UOUS_LnsIq6eHxwtYgq3ArpJZcB34ZOzsLfg52BISVycm-Qm-MzYS7TqZtv1946xpI-Z81VizisdkbObwBX2qTRvg68s6QH-mk9_jq_T6x-VsPLpOyzioTOuKMwWyKIQErpgQmFDGi4xBDTI3mZA5NoVROaiipFWJsWKgJMUlN0xUgg3Q-da77IsOqjIO5k2rl77pjF9rZxr9_41t_uq5u9WKYcYpi4KzF4F3N5tf0F0TSmjbGNL1QdMMC6FyHvEBOn2HLlzvY_wNRaWiVETjAA23VOldCB7q3TAE601betOW3rUVH5y8jbDDX-uJgNoCd00L6w90evR9NvknfwYv06Kb</recordid><startdate>20220221</startdate><enddate>20220221</enddate><creator>Birvé, André P.</creator><creator>Patel, Harshal D.</creator><creator>Price, Jason R.</creator><creator>Bloch, Witold M.</creator><creator>Fallon, Thomas</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6495-5282</orcidid></search><sort><creationdate>20220221</creationdate><title>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</title><author>Birvé, André P. ; Patel, Harshal D. ; Price, Jason R. ; Bloch, Witold M. ; Fallon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Cages</topic><topic>Communication</topic><topic>Communications</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Coordination</topic><topic>Coordination cage</topic><topic>Crystallography</topic><topic>Diastereoisomers</topic><topic>Enantiomers</topic><topic>Fluxional molecule</topic><topic>Halides</topic><topic>Host-guest chemistry</topic><topic>Isomerization</topic><topic>Ligands</topic><topic>Magnetic resonance spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birvé, André P.</creatorcontrib><creatorcontrib>Patel, Harshal D.</creatorcontrib><creatorcontrib>Price, Jason R.</creatorcontrib><creatorcontrib>Bloch, Witold M.</creatorcontrib><creatorcontrib>Fallon, Thomas</creatorcontrib><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birvé, André P.</au><au>Patel, Harshal D.</au><au>Price, Jason R.</au><au>Bloch, Witold M.</au><au>Fallon, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-02-21</date><risdate>2022</risdate><volume>61</volume><issue>9</issue><spage>e202115468</spage><epage>n/a</epage><pages>e202115468-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>A fluxional bis‐monodentate ligand, based on the archetypal shape‐shifting molecule bullvalene, self‐assembles with M2+ (M=Pd2+ or Pt2+) to produce a highly complex ensemble of permanently fluxional coordination cages. Metal‐mediated self‐assembly selects for an M2L4 architecture while maintaining shape‐shifting ligand complexity. A second level of simplification is achieved with guest‐exchange; the binding of halides within the M2L4 cage mixture results in a convergence to a cage species with all four ligands present as the “B isomer”. Within this confine, the reaction graph of the bullvalene is greatly restricted, but gives rise to a mixture of 38 possible diastereoisomers in rapid exchange. X‐ray crystallography reveals a preference for an achiral form consisting of both ligand enantiomers. Through a combination of NMR spectroscopy and DFT calculations, we elucidate the restricted isomerisation pathway of the permanently fluxional M2L4 assembly. The first metallo‐supramolecular M2L4 cages bearing shape‐shifting bullvalene ligands are prepared. The enormous potential complexity is limited by geometric constraints in solution, which converge to a single isomer in the solid state. Through detailed experimental and computational analysis, we map the fluxional nature of these systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34854191</pmid><doi>10.1002/anie.202115468</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6495-5282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-02, Vol.61 (9), p.e202115468-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303423
source Wiley-Blackwell Read & Publish Collection
subjects Assembly
Cages
Communication
Communications
Complexity
Convergence
Coordination
Coordination cage
Crystallography
Diastereoisomers
Enantiomers
Fluxional molecule
Halides
Host-guest chemistry
Isomerization
Ligands
Magnetic resonance spectroscopy
NMR
NMR spectroscopy
Nuclear magnetic resonance
Self-assembly
title Guest‐Dependent Isomer Convergence of a Permanently Fluxional Coordination Cage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guest%E2%80%90Dependent%20Isomer%20Convergence%20of%20a%20Permanently%20Fluxional%20Coordination%20Cage&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Birv%C3%A9,%20Andr%C3%A9%20P.&rft.date=2022-02-21&rft.volume=61&rft.issue=9&rft.spage=e202115468&rft.epage=n/a&rft.pages=e202115468-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202115468&rft_dat=%3Cproquest_pubme%3E2605597430%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4688-fd439e8bb58e4935501234b63efe87a65870aba97e9bc2dc0093e9820c4a35d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2628922542&rft_id=info:pmid/34854191&rfr_iscdi=true