Loading…
Synthesis of CoFe2O4/Peanut Shell Powder Composites and the Associated Magnetic Solid Phase Extraction of Phenoxy Carboxylic Acid Herbicides in Water
The magnetic biochar material CoFe2O4/PCPS (peanut shell powder) was prepared based on the hybrid calcination method. The properties of prepared composites and the extraction effect of magnetic solid phase extraction on phenoxy carboxylic acid herbicides were assessed. The morphology, crystal struct...
Saved in:
Published in: | International journal of environmental research and public health 2022-07, Vol.19 (14), p.8450 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The magnetic biochar material CoFe2O4/PCPS (peanut shell powder) was prepared based on the hybrid calcination method. The properties of prepared composites and the extraction effect of magnetic solid phase extraction on phenoxy carboxylic acid herbicides were assessed. The morphology, crystal structure, specific surface area, and pore size distribution of the material were analysed using a transmission electron microscope (TEM), infrared Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 absorption surface analysis (BET). The results of the magnetic solid phase extraction of a variety of phenoxy carboxylic acid herbicides in water using CoFe2O4/PCPS composites showed that, when the mass ratio of CoFe2O4 and PCPS was 1:1, 40 mg of the composite was used, and the adsorption time was 10 min at pH 8.50. Methanol was used as the eluent, and the recovery rates of the three phenoxy carboxylic acid herbicides were maintained at 81.95–99.07%. Furthermore, the actual water sample analysis results showed that the established method had good accuracy, stability, and reliability. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph19148450 |