Loading…
Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae
Summary Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a syn...
Saved in:
Published in: | The New phytologist 2022-07, Vol.235 (2), p.743-758 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3 |
container_end_page | 758 |
container_issue | 2 |
container_start_page | 743 |
container_title | The New phytologist |
container_volume | 235 |
creator | Shin, Hosub Park, Jeong Eun Park, Hye Rang Choi, Woo Lee Yu, Seung Hwa Koh, Wonjun Kim, Seungill Soh, Hye Yeon Waminal, Nomar Espinosa Belandres, Hadassah Roa Lim, Joo Young Yi, Gibum Ahn, Jong Hwa Kim, June‐Sik Kim, Yong‐Min Koo, Namjin Kim, Kyunghee Perumal, Sampath Kang, Taegu Kim, Junghyo Jang, Hosung Kang, Dong Hyun Kim, Ye Seul Jeong, Hyeon‐Min Yang, Junwoo Song, Somin Park, Suhyoung Kim, Jin A. Lim, Yong Pyo Park, Beom‐Seok Hsieh, Tzung‐Fu Yang, Tae‐Jin Choi, Doil Kim, Hyun Hee Lee, Soo‐Seong Huh, Jin Hoe |
description | Summary
Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus.
We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration.
Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis‐elements of duplicated genes are associated with convergent expression. Genome‐wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa‐originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation.
Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis–trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution. |
doi_str_mv | 10.1111/nph.18155 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9320894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676779949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhwB9AkbjAIe048Ud8QWoroEgVcACJmzXxjruuknixk8Ly6zHdUgESPtiW59GjGb-MPeVwxMs6nrabI95xKe-xFRfK1B1v9X22Ami6Wgn15YA9yvkKAIxUzUN20EoBrQa5Yv3Jegzf5yVRFX21DteULmmaq7LFkXLl0YUhzDiX-2bXp7AOP3AOcarQpZhzlbfkQimGqZo3VPgxDLvqNGHOwaEjpMfsgcch05Pb85B9fvP609l5ffHh7buzk4vaCdHK2netR6W89sb1nRLlEYXmnWsbJAngSAkQqBqQAtHrhoMGAUY4TT3wvj1kr_be7dKPtHZljISD3aYwYtrZiMH-XZnCxl7Ga2vaBjojiuDFrSDFrwvl2Y4hOxoGnCgu2TZKmEaCAl3Q5_-gV3FJUxmvUFppbYwwhXq5p26-KpG_a4aD_ZWcLcnZm-QK--zP7u_I31EV4HgPfAsD7f5vsu8_nu-VPwFpc6Qa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676779949</pqid></control><display><type>article</type><title>Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shin, Hosub ; Park, Jeong Eun ; Park, Hye Rang ; Choi, Woo Lee ; Yu, Seung Hwa ; Koh, Wonjun ; Kim, Seungill ; Soh, Hye Yeon ; Waminal, Nomar Espinosa ; Belandres, Hadassah Roa ; Lim, Joo Young ; Yi, Gibum ; Ahn, Jong Hwa ; Kim, June‐Sik ; Kim, Yong‐Min ; Koo, Namjin ; Kim, Kyunghee ; Perumal, Sampath ; Kang, Taegu ; Kim, Junghyo ; Jang, Hosung ; Kang, Dong Hyun ; Kim, Ye Seul ; Jeong, Hyeon‐Min ; Yang, Junwoo ; Song, Somin ; Park, Suhyoung ; Kim, Jin A. ; Lim, Yong Pyo ; Park, Beom‐Seok ; Hsieh, Tzung‐Fu ; Yang, Tae‐Jin ; Choi, Doil ; Kim, Hyun Hee ; Lee, Soo‐Seong ; Huh, Jin Hoe</creator><creatorcontrib>Shin, Hosub ; Park, Jeong Eun ; Park, Hye Rang ; Choi, Woo Lee ; Yu, Seung Hwa ; Koh, Wonjun ; Kim, Seungill ; Soh, Hye Yeon ; Waminal, Nomar Espinosa ; Belandres, Hadassah Roa ; Lim, Joo Young ; Yi, Gibum ; Ahn, Jong Hwa ; Kim, June‐Sik ; Kim, Yong‐Min ; Koo, Namjin ; Kim, Kyunghee ; Perumal, Sampath ; Kang, Taegu ; Kim, Junghyo ; Jang, Hosung ; Kang, Dong Hyun ; Kim, Ye Seul ; Jeong, Hyeon‐Min ; Yang, Junwoo ; Song, Somin ; Park, Suhyoung ; Kim, Jin A. ; Lim, Yong Pyo ; Park, Beom‐Seok ; Hsieh, Tzung‐Fu ; Yang, Tae‐Jin ; Choi, Doil ; Kim, Hyun Hee ; Lee, Soo‐Seong ; Huh, Jin Hoe</creatorcontrib><description>Summary
Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus.
We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration.
Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis‐elements of duplicated genes are associated with convergent expression. Genome‐wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa‐originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation.
Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis–trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.18155</identifier><identifier>PMID: 35403705</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>allopolyploidy ; Analysis ; Angiosperms ; Biological evolution ; Brassica ; Brassicaceae ; Chromosomes ; Cytogenetics ; Deoxyribonucleic acid ; Divergence ; DNA ; DNA methylation ; Epigenetics ; epigenome ; Evolution ; Gene duplication ; Gene expression ; Genes ; genome divergence ; Genomes ; hybrid ; Hybridization ; Meiosis ; Polyploidy ; Rare species ; Reconfiguration ; Reproduction (copying) ; Transcription ; Transcriptomes ; xBrassicoraphanus</subject><ispartof>The New phytologist, 2022-07, Vol.235 (2), p.743-758</ispartof><rights>2022 The Authors. © 2022 New Phytologist Foundation</rights><rights>2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3</citedby><cites>FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3</cites><orcidid>0000-0001-7575-2125 ; 0000-0003-4579-1179 ; 0000-0002-9367-9280 ; 0000-0001-6488-8430 ; 0000-0003-3403-1625 ; 0000-0002-7630-1892 ; 0000-0002-2422-643X ; 0000-0002-4703-609X ; 0000-0003-2978-9378 ; 0000-0001-9210-5843 ; 0000-0002-9676-8801 ; 0000-0002-5875-8434 ; 0000-0001-5119-152X ; 0000-0001-7584-3721 ; 0000-0002-4366-3627 ; 0000-0001-6287-8693 ; 0000-0002-6564-0944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35403705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Hosub</creatorcontrib><creatorcontrib>Park, Jeong Eun</creatorcontrib><creatorcontrib>Park, Hye Rang</creatorcontrib><creatorcontrib>Choi, Woo Lee</creatorcontrib><creatorcontrib>Yu, Seung Hwa</creatorcontrib><creatorcontrib>Koh, Wonjun</creatorcontrib><creatorcontrib>Kim, Seungill</creatorcontrib><creatorcontrib>Soh, Hye Yeon</creatorcontrib><creatorcontrib>Waminal, Nomar Espinosa</creatorcontrib><creatorcontrib>Belandres, Hadassah Roa</creatorcontrib><creatorcontrib>Lim, Joo Young</creatorcontrib><creatorcontrib>Yi, Gibum</creatorcontrib><creatorcontrib>Ahn, Jong Hwa</creatorcontrib><creatorcontrib>Kim, June‐Sik</creatorcontrib><creatorcontrib>Kim, Yong‐Min</creatorcontrib><creatorcontrib>Koo, Namjin</creatorcontrib><creatorcontrib>Kim, Kyunghee</creatorcontrib><creatorcontrib>Perumal, Sampath</creatorcontrib><creatorcontrib>Kang, Taegu</creatorcontrib><creatorcontrib>Kim, Junghyo</creatorcontrib><creatorcontrib>Jang, Hosung</creatorcontrib><creatorcontrib>Kang, Dong Hyun</creatorcontrib><creatorcontrib>Kim, Ye Seul</creatorcontrib><creatorcontrib>Jeong, Hyeon‐Min</creatorcontrib><creatorcontrib>Yang, Junwoo</creatorcontrib><creatorcontrib>Song, Somin</creatorcontrib><creatorcontrib>Park, Suhyoung</creatorcontrib><creatorcontrib>Kim, Jin A.</creatorcontrib><creatorcontrib>Lim, Yong Pyo</creatorcontrib><creatorcontrib>Park, Beom‐Seok</creatorcontrib><creatorcontrib>Hsieh, Tzung‐Fu</creatorcontrib><creatorcontrib>Yang, Tae‐Jin</creatorcontrib><creatorcontrib>Choi, Doil</creatorcontrib><creatorcontrib>Kim, Hyun Hee</creatorcontrib><creatorcontrib>Lee, Soo‐Seong</creatorcontrib><creatorcontrib>Huh, Jin Hoe</creatorcontrib><title>Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus.
We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration.
Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis‐elements of duplicated genes are associated with convergent expression. Genome‐wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa‐originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation.
Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis–trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution.</description><subject>allopolyploidy</subject><subject>Analysis</subject><subject>Angiosperms</subject><subject>Biological evolution</subject><subject>Brassica</subject><subject>Brassicaceae</subject><subject>Chromosomes</subject><subject>Cytogenetics</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Epigenetics</subject><subject>epigenome</subject><subject>Evolution</subject><subject>Gene duplication</subject><subject>Gene expression</subject><subject>Genes</subject><subject>genome divergence</subject><subject>Genomes</subject><subject>hybrid</subject><subject>Hybridization</subject><subject>Meiosis</subject><subject>Polyploidy</subject><subject>Rare species</subject><subject>Reconfiguration</subject><subject>Reproduction (copying)</subject><subject>Transcription</subject><subject>Transcriptomes</subject><subject>xBrassicoraphanus</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1v1DAQhi0EokvhwB9AkbjAIe048Ud8QWoroEgVcACJmzXxjruuknixk8Ly6zHdUgESPtiW59GjGb-MPeVwxMs6nrabI95xKe-xFRfK1B1v9X22Ami6Wgn15YA9yvkKAIxUzUN20EoBrQa5Yv3Jegzf5yVRFX21DteULmmaq7LFkXLl0YUhzDiX-2bXp7AOP3AOcarQpZhzlbfkQimGqZo3VPgxDLvqNGHOwaEjpMfsgcch05Pb85B9fvP609l5ffHh7buzk4vaCdHK2netR6W89sb1nRLlEYXmnWsbJAngSAkQqBqQAtHrhoMGAUY4TT3wvj1kr_be7dKPtHZljISD3aYwYtrZiMH-XZnCxl7Ga2vaBjojiuDFrSDFrwvl2Y4hOxoGnCgu2TZKmEaCAl3Q5_-gV3FJUxmvUFppbYwwhXq5p26-KpG_a4aD_ZWcLcnZm-QK--zP7u_I31EV4HgPfAsD7f5vsu8_nu-VPwFpc6Qa</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Shin, Hosub</creator><creator>Park, Jeong Eun</creator><creator>Park, Hye Rang</creator><creator>Choi, Woo Lee</creator><creator>Yu, Seung Hwa</creator><creator>Koh, Wonjun</creator><creator>Kim, Seungill</creator><creator>Soh, Hye Yeon</creator><creator>Waminal, Nomar Espinosa</creator><creator>Belandres, Hadassah Roa</creator><creator>Lim, Joo Young</creator><creator>Yi, Gibum</creator><creator>Ahn, Jong Hwa</creator><creator>Kim, June‐Sik</creator><creator>Kim, Yong‐Min</creator><creator>Koo, Namjin</creator><creator>Kim, Kyunghee</creator><creator>Perumal, Sampath</creator><creator>Kang, Taegu</creator><creator>Kim, Junghyo</creator><creator>Jang, Hosung</creator><creator>Kang, Dong Hyun</creator><creator>Kim, Ye Seul</creator><creator>Jeong, Hyeon‐Min</creator><creator>Yang, Junwoo</creator><creator>Song, Somin</creator><creator>Park, Suhyoung</creator><creator>Kim, Jin A.</creator><creator>Lim, Yong Pyo</creator><creator>Park, Beom‐Seok</creator><creator>Hsieh, Tzung‐Fu</creator><creator>Yang, Tae‐Jin</creator><creator>Choi, Doil</creator><creator>Kim, Hyun Hee</creator><creator>Lee, Soo‐Seong</creator><creator>Huh, Jin Hoe</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7575-2125</orcidid><orcidid>https://orcid.org/0000-0003-4579-1179</orcidid><orcidid>https://orcid.org/0000-0002-9367-9280</orcidid><orcidid>https://orcid.org/0000-0001-6488-8430</orcidid><orcidid>https://orcid.org/0000-0003-3403-1625</orcidid><orcidid>https://orcid.org/0000-0002-7630-1892</orcidid><orcidid>https://orcid.org/0000-0002-2422-643X</orcidid><orcidid>https://orcid.org/0000-0002-4703-609X</orcidid><orcidid>https://orcid.org/0000-0003-2978-9378</orcidid><orcidid>https://orcid.org/0000-0001-9210-5843</orcidid><orcidid>https://orcid.org/0000-0002-9676-8801</orcidid><orcidid>https://orcid.org/0000-0002-5875-8434</orcidid><orcidid>https://orcid.org/0000-0001-5119-152X</orcidid><orcidid>https://orcid.org/0000-0001-7584-3721</orcidid><orcidid>https://orcid.org/0000-0002-4366-3627</orcidid><orcidid>https://orcid.org/0000-0001-6287-8693</orcidid><orcidid>https://orcid.org/0000-0002-6564-0944</orcidid></search><sort><creationdate>202207</creationdate><title>Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae</title><author>Shin, Hosub ; Park, Jeong Eun ; Park, Hye Rang ; Choi, Woo Lee ; Yu, Seung Hwa ; Koh, Wonjun ; Kim, Seungill ; Soh, Hye Yeon ; Waminal, Nomar Espinosa ; Belandres, Hadassah Roa ; Lim, Joo Young ; Yi, Gibum ; Ahn, Jong Hwa ; Kim, June‐Sik ; Kim, Yong‐Min ; Koo, Namjin ; Kim, Kyunghee ; Perumal, Sampath ; Kang, Taegu ; Kim, Junghyo ; Jang, Hosung ; Kang, Dong Hyun ; Kim, Ye Seul ; Jeong, Hyeon‐Min ; Yang, Junwoo ; Song, Somin ; Park, Suhyoung ; Kim, Jin A. ; Lim, Yong Pyo ; Park, Beom‐Seok ; Hsieh, Tzung‐Fu ; Yang, Tae‐Jin ; Choi, Doil ; Kim, Hyun Hee ; Lee, Soo‐Seong ; Huh, Jin Hoe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>allopolyploidy</topic><topic>Analysis</topic><topic>Angiosperms</topic><topic>Biological evolution</topic><topic>Brassica</topic><topic>Brassicaceae</topic><topic>Chromosomes</topic><topic>Cytogenetics</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Epigenetics</topic><topic>epigenome</topic><topic>Evolution</topic><topic>Gene duplication</topic><topic>Gene expression</topic><topic>Genes</topic><topic>genome divergence</topic><topic>Genomes</topic><topic>hybrid</topic><topic>Hybridization</topic><topic>Meiosis</topic><topic>Polyploidy</topic><topic>Rare species</topic><topic>Reconfiguration</topic><topic>Reproduction (copying)</topic><topic>Transcription</topic><topic>Transcriptomes</topic><topic>xBrassicoraphanus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hosub</creatorcontrib><creatorcontrib>Park, Jeong Eun</creatorcontrib><creatorcontrib>Park, Hye Rang</creatorcontrib><creatorcontrib>Choi, Woo Lee</creatorcontrib><creatorcontrib>Yu, Seung Hwa</creatorcontrib><creatorcontrib>Koh, Wonjun</creatorcontrib><creatorcontrib>Kim, Seungill</creatorcontrib><creatorcontrib>Soh, Hye Yeon</creatorcontrib><creatorcontrib>Waminal, Nomar Espinosa</creatorcontrib><creatorcontrib>Belandres, Hadassah Roa</creatorcontrib><creatorcontrib>Lim, Joo Young</creatorcontrib><creatorcontrib>Yi, Gibum</creatorcontrib><creatorcontrib>Ahn, Jong Hwa</creatorcontrib><creatorcontrib>Kim, June‐Sik</creatorcontrib><creatorcontrib>Kim, Yong‐Min</creatorcontrib><creatorcontrib>Koo, Namjin</creatorcontrib><creatorcontrib>Kim, Kyunghee</creatorcontrib><creatorcontrib>Perumal, Sampath</creatorcontrib><creatorcontrib>Kang, Taegu</creatorcontrib><creatorcontrib>Kim, Junghyo</creatorcontrib><creatorcontrib>Jang, Hosung</creatorcontrib><creatorcontrib>Kang, Dong Hyun</creatorcontrib><creatorcontrib>Kim, Ye Seul</creatorcontrib><creatorcontrib>Jeong, Hyeon‐Min</creatorcontrib><creatorcontrib>Yang, Junwoo</creatorcontrib><creatorcontrib>Song, Somin</creatorcontrib><creatorcontrib>Park, Suhyoung</creatorcontrib><creatorcontrib>Kim, Jin A.</creatorcontrib><creatorcontrib>Lim, Yong Pyo</creatorcontrib><creatorcontrib>Park, Beom‐Seok</creatorcontrib><creatorcontrib>Hsieh, Tzung‐Fu</creatorcontrib><creatorcontrib>Yang, Tae‐Jin</creatorcontrib><creatorcontrib>Choi, Doil</creatorcontrib><creatorcontrib>Kim, Hyun Hee</creatorcontrib><creatorcontrib>Lee, Soo‐Seong</creatorcontrib><creatorcontrib>Huh, Jin Hoe</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hosub</au><au>Park, Jeong Eun</au><au>Park, Hye Rang</au><au>Choi, Woo Lee</au><au>Yu, Seung Hwa</au><au>Koh, Wonjun</au><au>Kim, Seungill</au><au>Soh, Hye Yeon</au><au>Waminal, Nomar Espinosa</au><au>Belandres, Hadassah Roa</au><au>Lim, Joo Young</au><au>Yi, Gibum</au><au>Ahn, Jong Hwa</au><au>Kim, June‐Sik</au><au>Kim, Yong‐Min</au><au>Koo, Namjin</au><au>Kim, Kyunghee</au><au>Perumal, Sampath</au><au>Kang, Taegu</au><au>Kim, Junghyo</au><au>Jang, Hosung</au><au>Kang, Dong Hyun</au><au>Kim, Ye Seul</au><au>Jeong, Hyeon‐Min</au><au>Yang, Junwoo</au><au>Song, Somin</au><au>Park, Suhyoung</au><au>Kim, Jin A.</au><au>Lim, Yong Pyo</au><au>Park, Beom‐Seok</au><au>Hsieh, Tzung‐Fu</au><au>Yang, Tae‐Jin</au><au>Choi, Doil</au><au>Kim, Hyun Hee</au><au>Lee, Soo‐Seong</au><au>Huh, Jin Hoe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2022-07</date><risdate>2022</risdate><volume>235</volume><issue>2</issue><spage>743</spage><epage>758</epage><pages>743-758</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species are rare in nature due to reproductive barriers but how such hurdles can be overcome is largely unknown. Here we report the hybrid genome structure of xBrassicoraphanus, a synthetic allotetraploid of Brassica rapa and Raphanus sativus.
We performed cytogenetic analysis and de novo genome assembly to examine chromosome behaviors and genome integrity in the hybrid. Transcriptome analysis was conducted to investigate expression of duplicated genes in conjunction with epigenome analysis to address whether genome admixture entails epigenetic reconfiguration.
Allotetraploid xBrassicoraphanus retains both parental chromosomes without genome rearrangement. Meiotic synapsis formation and chromosome exchange are avoided between nonhomologous progenitor chromosomes. Reconfiguration of transcription network occurs, and less divergent cis‐elements of duplicated genes are associated with convergent expression. Genome‐wide DNA methylation asymmetry between progenitors is largely maintained but, notably, B. rapa‐originated transposable elements are transcriptionally silenced in xBrassicoraphanus through gain of DNA methylation.
Our results demonstrate that hybrid genome stabilization and transcription compatibility necessitate epigenome landscape adjustment and rewiring of cis–trans interactions. Overall, this study suggests that a certain extent of genome divergence facilitates hybridization across species, which may explain the great diversification and expansion of angiosperms during evolution.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35403705</pmid><doi>10.1111/nph.18155</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7575-2125</orcidid><orcidid>https://orcid.org/0000-0003-4579-1179</orcidid><orcidid>https://orcid.org/0000-0002-9367-9280</orcidid><orcidid>https://orcid.org/0000-0001-6488-8430</orcidid><orcidid>https://orcid.org/0000-0003-3403-1625</orcidid><orcidid>https://orcid.org/0000-0002-7630-1892</orcidid><orcidid>https://orcid.org/0000-0002-2422-643X</orcidid><orcidid>https://orcid.org/0000-0002-4703-609X</orcidid><orcidid>https://orcid.org/0000-0003-2978-9378</orcidid><orcidid>https://orcid.org/0000-0001-9210-5843</orcidid><orcidid>https://orcid.org/0000-0002-9676-8801</orcidid><orcidid>https://orcid.org/0000-0002-5875-8434</orcidid><orcidid>https://orcid.org/0000-0001-5119-152X</orcidid><orcidid>https://orcid.org/0000-0001-7584-3721</orcidid><orcidid>https://orcid.org/0000-0002-4366-3627</orcidid><orcidid>https://orcid.org/0000-0001-6287-8693</orcidid><orcidid>https://orcid.org/0000-0002-6564-0944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2022-07, Vol.235 (2), p.743-758 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9320894 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | allopolyploidy Analysis Angiosperms Biological evolution Brassica Brassicaceae Chromosomes Cytogenetics Deoxyribonucleic acid Divergence DNA DNA methylation Epigenetics epigenome Evolution Gene duplication Gene expression Genes genome divergence Genomes hybrid Hybridization Meiosis Polyploidy Rare species Reconfiguration Reproduction (copying) Transcription Transcriptomes xBrassicoraphanus |
title | Admixture of divergent genomes facilitates hybridization across species in the family Brassicaceae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Admixture%20of%20divergent%20genomes%20facilitates%20hybridization%20across%20species%20in%20the%20family%20Brassicaceae&rft.jtitle=The%20New%20phytologist&rft.au=Shin,%20Hosub&rft.date=2022-07&rft.volume=235&rft.issue=2&rft.spage=743&rft.epage=758&rft.pages=743-758&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.18155&rft_dat=%3Cproquest_pubme%3E2676779949%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4435-f83fa66f7f9cb864443a4718c32ae500ce6404a62054aaf7210704094c7eb01b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676779949&rft_id=info:pmid/35403705&rfr_iscdi=true |