Loading…

Structural Formation of Soil Concretes Based on Loam and Fly Ash, Modified with a Stabilizing Polymer Additive

Finding new ways of recycling production waste to improve the characteristics of various building materials is an urgent scientific task. This article substantiates the possibility of the disposal of fly ash in the composition of soil concrete, which is used in the construction of the structural lay...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-07, Vol.15 (14), p.4893
Main Authors: Konovalova, Nataliya, Pankov, Pavel, Petukhov, Valery, Fediuk, Roman, Amran, Mugahed, Vatin, Nikolai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Finding new ways of recycling production waste to improve the characteristics of various building materials is an urgent scientific task. This article substantiates the possibility of the disposal of fly ash in the composition of soil concrete, which is used in the construction of the structural layers of road pavements, foundations of buildings and structures, as well as sites for various purposes. The scientific novelty lies in the fact that the structure formation of soil concretes based on loam and fly ash and modified with a stabilizing additive is being studied for the first time. It was found that the investigated fly ash, according to its hydraulic properties, is classified as latent active and can be introduced into the compositions of road soil concrete modified with additives of various resources. The effectiveness of the complex method of stabilization, due to changes in soil properties as a result of the use of the binding and stabilizing additives of polymer nature “Kriogelit”, is shown. It was found that the optimal content of binder and fly ash in the samples was 8 and 10 wt.%, respectively. It was established that the use of the stabilizing additive “Kriogelit” makes it possible to obtain soil concrete with the highest strength (compressive strength 2.5 MPa, flexural strength 0.5 MPa) and frost resistance of at least F15. The microstructure, the degree of dehydration and carbonization, and the phase composition of the initial raw mixtures and soil concretes stabilized with the addition of “Kriogelit” were studied by methods of scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, thermogravimetry, and infrared spectroscopy. It was shown that organo-mineral complexes, with the participation of polymer and montmorillonite, are formed in stabilized soil concrete. It was revealed that structure formation is accompanied by the physical adsorption of the polymer on active centers of silicate minerals, carbonization, and hydration–dehydration processes. It was found that the reason for the increase in the strength of stabilized soil concretes is the hydrophobization of the porous structure of minerals, as well as the formation of calcium oxide silicate and dicalcium hydrated silicate. By the method of performing biotests with the test objects Daphnia magna Straus and Chlorella vulgaris Beijer, it was proven that the developed road concretes modified with the stabilizing additive “Kriogelit” do not have an ac
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15144893