Loading…

Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology

This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticiz...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-07, Vol.14 (15), p.3006
Main Authors: Fitriani, Fitriani, Aprilia, Sri, Bilad, Muhammad Roil, Arahman, Nasrul, Usman, Anwar, Huda, Nurul, Kobun, Rovina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283
cites cdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283
container_end_page
container_issue 15
container_start_page 3006
container_title Polymers
container_volume 14
creator Fitriani, Fitriani
Aprilia, Sri
Bilad, Muhammad Roil
Arahman, Nasrul
Usman, Anwar
Huda, Nurul
Kobun, Rovina
description This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.
doi_str_mv 10.3390/polym14153006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9332505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700755102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhSMEolXpkbslLlwCjh3H6wsSXVGotNAKqDhajj3ZdeV4gp2Awk_h1-KqFaL4Mpbfpzd-M1X1vKGvOFf09YRhHZu2EZzS7lF1zKjkdcs7-vif-1F1mvMNLacVXdfIp9URFxvFleTH1e_Lafaj_2Vmj5HgQM48WhwnzH4Gcu7DSM5MBkeK-u0AK7lKOIOP5CJjMAUx0ZFPJqJNa55NCD4C2UIIS8AMZEg4kqvyZqYpFCHhz0h2YAZynX3ck8-QJ4wF_LKkwVggH2E-oMOA-_VZ9WQwIcPpfT2prs_ffd1-qHeX7y-2b3e15YrNdaskbFzrjOsby6xwfWe7oWcOVGtaR0tiKZSQThbNcQqUK2BK9U42G8M2_KR6c-c7Lf0IzkKckwl6Sn40adVovH6oRH_Qe_yhFedMUFEMXt4bJPy-QJ716LMtMzARcMmadUqwjVD0tteL_9AbXFIs8TSTlEohGsoKVd9RNmHOCYa_n2movl28frB4_gealKPT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700755102</pqid></control><display><type>article</type><title>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fitriani, Fitriani ; Aprilia, Sri ; Bilad, Muhammad Roil ; Arahman, Nasrul ; Usman, Anwar ; Huda, Nurul ; Kobun, Rovina</creator><creatorcontrib>Fitriani, Fitriani ; Aprilia, Sri ; Bilad, Muhammad Roil ; Arahman, Nasrul ; Usman, Anwar ; Huda, Nurul ; Kobun, Rovina</creatorcontrib><description>This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14153006</identifier><identifier>PMID: 35893973</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biodegradable materials ; Biomedical materials ; Biopolymers ; Cellulose ; Cellulosic resins ; Composite materials ; Elongation ; Environmental impact ; Fillers ; Food ; Food packaging ; Fourier transforms ; Glycerol ; Hydrogen bonds ; Mathematical models ; Mechanical properties ; Nanocrystals ; Nanomaterials ; Optimization ; Pineapples ; Polynomials ; Proteins ; Regression models ; Response surface methodology ; Tensile strength ; Thickness ; Variance analysis ; Water vapor ; Whey</subject><ispartof>Polymers, 2022-07, Vol.14 (15), p.3006</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</citedby><cites>FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</cites><orcidid>0000-0001-5077-2867 ; 0000-0002-4985-9145 ; 0000-0002-8199-2931 ; 0000-0001-6583-5007 ; 0000-0001-9867-6401 ; 0000-0001-7292-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700755102/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700755102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Fitriani, Fitriani</creatorcontrib><creatorcontrib>Aprilia, Sri</creatorcontrib><creatorcontrib>Bilad, Muhammad Roil</creatorcontrib><creatorcontrib>Arahman, Nasrul</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><creatorcontrib>Huda, Nurul</creatorcontrib><creatorcontrib>Kobun, Rovina</creatorcontrib><title>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</title><title>Polymers</title><description>This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.</description><subject>Biodegradable materials</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cellulose</subject><subject>Cellulosic resins</subject><subject>Composite materials</subject><subject>Elongation</subject><subject>Environmental impact</subject><subject>Fillers</subject><subject>Food</subject><subject>Food packaging</subject><subject>Fourier transforms</subject><subject>Glycerol</subject><subject>Hydrogen bonds</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Optimization</subject><subject>Pineapples</subject><subject>Polynomials</subject><subject>Proteins</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Variance analysis</subject><subject>Water vapor</subject><subject>Whey</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUFv1DAQhSMEolXpkbslLlwCjh3H6wsSXVGotNAKqDhajj3ZdeV4gp2Awk_h1-KqFaL4Mpbfpzd-M1X1vKGvOFf09YRhHZu2EZzS7lF1zKjkdcs7-vif-1F1mvMNLacVXdfIp9URFxvFleTH1e_Lafaj_2Vmj5HgQM48WhwnzH4Gcu7DSM5MBkeK-u0AK7lKOIOP5CJjMAUx0ZFPJqJNa55NCD4C2UIIS8AMZEg4kqvyZqYpFCHhz0h2YAZynX3ck8-QJ4wF_LKkwVggH2E-oMOA-_VZ9WQwIcPpfT2prs_ffd1-qHeX7y-2b3e15YrNdaskbFzrjOsby6xwfWe7oWcOVGtaR0tiKZSQThbNcQqUK2BK9U42G8M2_KR6c-c7Lf0IzkKckwl6Sn40adVovH6oRH_Qe_yhFedMUFEMXt4bJPy-QJ716LMtMzARcMmadUqwjVD0tteL_9AbXFIs8TSTlEohGsoKVd9RNmHOCYa_n2movl28frB4_gealKPT</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Fitriani, Fitriani</creator><creator>Aprilia, Sri</creator><creator>Bilad, Muhammad Roil</creator><creator>Arahman, Nasrul</creator><creator>Usman, Anwar</creator><creator>Huda, Nurul</creator><creator>Kobun, Rovina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5077-2867</orcidid><orcidid>https://orcid.org/0000-0002-4985-9145</orcidid><orcidid>https://orcid.org/0000-0002-8199-2931</orcidid><orcidid>https://orcid.org/0000-0001-6583-5007</orcidid><orcidid>https://orcid.org/0000-0001-9867-6401</orcidid><orcidid>https://orcid.org/0000-0001-7292-6046</orcidid></search><sort><creationdate>20220725</creationdate><title>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</title><author>Fitriani, Fitriani ; Aprilia, Sri ; Bilad, Muhammad Roil ; Arahman, Nasrul ; Usman, Anwar ; Huda, Nurul ; Kobun, Rovina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biodegradable materials</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cellulose</topic><topic>Cellulosic resins</topic><topic>Composite materials</topic><topic>Elongation</topic><topic>Environmental impact</topic><topic>Fillers</topic><topic>Food</topic><topic>Food packaging</topic><topic>Fourier transforms</topic><topic>Glycerol</topic><topic>Hydrogen bonds</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Optimization</topic><topic>Pineapples</topic><topic>Polynomials</topic><topic>Proteins</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Variance analysis</topic><topic>Water vapor</topic><topic>Whey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitriani, Fitriani</creatorcontrib><creatorcontrib>Aprilia, Sri</creatorcontrib><creatorcontrib>Bilad, Muhammad Roil</creatorcontrib><creatorcontrib>Arahman, Nasrul</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><creatorcontrib>Huda, Nurul</creatorcontrib><creatorcontrib>Kobun, Rovina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitriani, Fitriani</au><au>Aprilia, Sri</au><au>Bilad, Muhammad Roil</au><au>Arahman, Nasrul</au><au>Usman, Anwar</au><au>Huda, Nurul</au><au>Kobun, Rovina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</atitle><jtitle>Polymers</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>3006</spage><pages>3006-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35893973</pmid><doi>10.3390/polym14153006</doi><orcidid>https://orcid.org/0000-0001-5077-2867</orcidid><orcidid>https://orcid.org/0000-0002-4985-9145</orcidid><orcidid>https://orcid.org/0000-0002-8199-2931</orcidid><orcidid>https://orcid.org/0000-0001-6583-5007</orcidid><orcidid>https://orcid.org/0000-0001-9867-6401</orcidid><orcidid>https://orcid.org/0000-0001-7292-6046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-07, Vol.14 (15), p.3006
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9332505
source Publicly Available Content Database; PubMed Central
subjects Biodegradable materials
Biomedical materials
Biopolymers
Cellulose
Cellulosic resins
Composite materials
Elongation
Environmental impact
Fillers
Food
Food packaging
Fourier transforms
Glycerol
Hydrogen bonds
Mathematical models
Mechanical properties
Nanocrystals
Nanomaterials
Optimization
Pineapples
Polynomials
Proteins
Regression models
Response surface methodology
Tensile strength
Thickness
Variance analysis
Water vapor
Whey
title Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Biocomposite%20Film%20Based%20on%20Whey%20Protein%20Isolate%20and%20Nanocrystalline%20Cellulose%20from%20Pineapple%20Crown%20Leaf%20Using%20Response%20Surface%20Methodology&rft.jtitle=Polymers&rft.au=Fitriani,%20Fitriani&rft.date=2022-07-25&rft.volume=14&rft.issue=15&rft.spage=3006&rft.pages=3006-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14153006&rft_dat=%3Cproquest_pubme%3E2700755102%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700755102&rft_id=info:pmid/35893973&rfr_iscdi=true