Loading…
Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology
This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticiz...
Saved in:
Published in: | Polymers 2022-07, Vol.14 (15), p.3006 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283 |
container_end_page | |
container_issue | 15 |
container_start_page | 3006 |
container_title | Polymers |
container_volume | 14 |
creator | Fitriani, Fitriani Aprilia, Sri Bilad, Muhammad Roil Arahman, Nasrul Usman, Anwar Huda, Nurul Kobun, Rovina |
description | This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film. |
doi_str_mv | 10.3390/polym14153006 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9332505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700755102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhSMEolXpkbslLlwCjh3H6wsSXVGotNAKqDhajj3ZdeV4gp2Awk_h1-KqFaL4Mpbfpzd-M1X1vKGvOFf09YRhHZu2EZzS7lF1zKjkdcs7-vif-1F1mvMNLacVXdfIp9URFxvFleTH1e_Lafaj_2Vmj5HgQM48WhwnzH4Gcu7DSM5MBkeK-u0AK7lKOIOP5CJjMAUx0ZFPJqJNa55NCD4C2UIIS8AMZEg4kqvyZqYpFCHhz0h2YAZynX3ck8-QJ4wF_LKkwVggH2E-oMOA-_VZ9WQwIcPpfT2prs_ffd1-qHeX7y-2b3e15YrNdaskbFzrjOsby6xwfWe7oWcOVGtaR0tiKZSQThbNcQqUK2BK9U42G8M2_KR6c-c7Lf0IzkKckwl6Sn40adVovH6oRH_Qe_yhFedMUFEMXt4bJPy-QJ716LMtMzARcMmadUqwjVD0tteL_9AbXFIs8TSTlEohGsoKVd9RNmHOCYa_n2movl28frB4_gealKPT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700755102</pqid></control><display><type>article</type><title>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fitriani, Fitriani ; Aprilia, Sri ; Bilad, Muhammad Roil ; Arahman, Nasrul ; Usman, Anwar ; Huda, Nurul ; Kobun, Rovina</creator><creatorcontrib>Fitriani, Fitriani ; Aprilia, Sri ; Bilad, Muhammad Roil ; Arahman, Nasrul ; Usman, Anwar ; Huda, Nurul ; Kobun, Rovina</creatorcontrib><description>This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14153006</identifier><identifier>PMID: 35893973</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biodegradable materials ; Biomedical materials ; Biopolymers ; Cellulose ; Cellulosic resins ; Composite materials ; Elongation ; Environmental impact ; Fillers ; Food ; Food packaging ; Fourier transforms ; Glycerol ; Hydrogen bonds ; Mathematical models ; Mechanical properties ; Nanocrystals ; Nanomaterials ; Optimization ; Pineapples ; Polynomials ; Proteins ; Regression models ; Response surface methodology ; Tensile strength ; Thickness ; Variance analysis ; Water vapor ; Whey</subject><ispartof>Polymers, 2022-07, Vol.14 (15), p.3006</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</citedby><cites>FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</cites><orcidid>0000-0001-5077-2867 ; 0000-0002-4985-9145 ; 0000-0002-8199-2931 ; 0000-0001-6583-5007 ; 0000-0001-9867-6401 ; 0000-0001-7292-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700755102/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700755102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Fitriani, Fitriani</creatorcontrib><creatorcontrib>Aprilia, Sri</creatorcontrib><creatorcontrib>Bilad, Muhammad Roil</creatorcontrib><creatorcontrib>Arahman, Nasrul</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><creatorcontrib>Huda, Nurul</creatorcontrib><creatorcontrib>Kobun, Rovina</creatorcontrib><title>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</title><title>Polymers</title><description>This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.</description><subject>Biodegradable materials</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cellulose</subject><subject>Cellulosic resins</subject><subject>Composite materials</subject><subject>Elongation</subject><subject>Environmental impact</subject><subject>Fillers</subject><subject>Food</subject><subject>Food packaging</subject><subject>Fourier transforms</subject><subject>Glycerol</subject><subject>Hydrogen bonds</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Optimization</subject><subject>Pineapples</subject><subject>Polynomials</subject><subject>Proteins</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Variance analysis</subject><subject>Water vapor</subject><subject>Whey</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUFv1DAQhSMEolXpkbslLlwCjh3H6wsSXVGotNAKqDhajj3ZdeV4gp2Awk_h1-KqFaL4Mpbfpzd-M1X1vKGvOFf09YRhHZu2EZzS7lF1zKjkdcs7-vif-1F1mvMNLacVXdfIp9URFxvFleTH1e_Lafaj_2Vmj5HgQM48WhwnzH4Gcu7DSM5MBkeK-u0AK7lKOIOP5CJjMAUx0ZFPJqJNa55NCD4C2UIIS8AMZEg4kqvyZqYpFCHhz0h2YAZynX3ck8-QJ4wF_LKkwVggH2E-oMOA-_VZ9WQwIcPpfT2prs_ffd1-qHeX7y-2b3e15YrNdaskbFzrjOsby6xwfWe7oWcOVGtaR0tiKZSQThbNcQqUK2BK9U42G8M2_KR6c-c7Lf0IzkKckwl6Sn40adVovH6oRH_Qe_yhFedMUFEMXt4bJPy-QJ716LMtMzARcMmadUqwjVD0tteL_9AbXFIs8TSTlEohGsoKVd9RNmHOCYa_n2movl28frB4_gealKPT</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Fitriani, Fitriani</creator><creator>Aprilia, Sri</creator><creator>Bilad, Muhammad Roil</creator><creator>Arahman, Nasrul</creator><creator>Usman, Anwar</creator><creator>Huda, Nurul</creator><creator>Kobun, Rovina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5077-2867</orcidid><orcidid>https://orcid.org/0000-0002-4985-9145</orcidid><orcidid>https://orcid.org/0000-0002-8199-2931</orcidid><orcidid>https://orcid.org/0000-0001-6583-5007</orcidid><orcidid>https://orcid.org/0000-0001-9867-6401</orcidid><orcidid>https://orcid.org/0000-0001-7292-6046</orcidid></search><sort><creationdate>20220725</creationdate><title>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</title><author>Fitriani, Fitriani ; Aprilia, Sri ; Bilad, Muhammad Roil ; Arahman, Nasrul ; Usman, Anwar ; Huda, Nurul ; Kobun, Rovina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biodegradable materials</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cellulose</topic><topic>Cellulosic resins</topic><topic>Composite materials</topic><topic>Elongation</topic><topic>Environmental impact</topic><topic>Fillers</topic><topic>Food</topic><topic>Food packaging</topic><topic>Fourier transforms</topic><topic>Glycerol</topic><topic>Hydrogen bonds</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Optimization</topic><topic>Pineapples</topic><topic>Polynomials</topic><topic>Proteins</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Variance analysis</topic><topic>Water vapor</topic><topic>Whey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitriani, Fitriani</creatorcontrib><creatorcontrib>Aprilia, Sri</creatorcontrib><creatorcontrib>Bilad, Muhammad Roil</creatorcontrib><creatorcontrib>Arahman, Nasrul</creatorcontrib><creatorcontrib>Usman, Anwar</creatorcontrib><creatorcontrib>Huda, Nurul</creatorcontrib><creatorcontrib>Kobun, Rovina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitriani, Fitriani</au><au>Aprilia, Sri</au><au>Bilad, Muhammad Roil</au><au>Arahman, Nasrul</au><au>Usman, Anwar</au><au>Huda, Nurul</au><au>Kobun, Rovina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology</atitle><jtitle>Polymers</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>3006</spage><pages>3006-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35893973</pmid><doi>10.3390/polym14153006</doi><orcidid>https://orcid.org/0000-0001-5077-2867</orcidid><orcidid>https://orcid.org/0000-0002-4985-9145</orcidid><orcidid>https://orcid.org/0000-0002-8199-2931</orcidid><orcidid>https://orcid.org/0000-0001-6583-5007</orcidid><orcidid>https://orcid.org/0000-0001-9867-6401</orcidid><orcidid>https://orcid.org/0000-0001-7292-6046</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-07, Vol.14 (15), p.3006 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9332505 |
source | Publicly Available Content Database; PubMed Central |
subjects | Biodegradable materials Biomedical materials Biopolymers Cellulose Cellulosic resins Composite materials Elongation Environmental impact Fillers Food Food packaging Fourier transforms Glycerol Hydrogen bonds Mathematical models Mechanical properties Nanocrystals Nanomaterials Optimization Pineapples Polynomials Proteins Regression models Response surface methodology Tensile strength Thickness Variance analysis Water vapor Whey |
title | Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Biocomposite%20Film%20Based%20on%20Whey%20Protein%20Isolate%20and%20Nanocrystalline%20Cellulose%20from%20Pineapple%20Crown%20Leaf%20Using%20Response%20Surface%20Methodology&rft.jtitle=Polymers&rft.au=Fitriani,%20Fitriani&rft.date=2022-07-25&rft.volume=14&rft.issue=15&rft.spage=3006&rft.pages=3006-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14153006&rft_dat=%3Cproquest_pubme%3E2700755102%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-497e8d4dadb1c2c5db6c6fb2de94a4d061775957d7c5dd30e039e299bd718a283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700755102&rft_id=info:pmid/35893973&rfr_iscdi=true |