Loading…

COQ10B Knockdown Modulates Cell Proliferation, Invasion, Migration, and Apoptosis in Esophageal Squamous Cell Carcinoma

Objective. Esophageal squamous-cell carcinoma (ESCC) is an aggressive malignant tumor, accounting for more than 90% of esophageal cancers. However, treatments such as surgical resection, radiotherapy, and chemotherapy are unable to achieve ideal clinical outcomes. The purpose of this study was to ex...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2022, Vol.2022, p.6247824-9
Main Authors: Wei, Yu, Liu, Juan, Gao, Yan, Ma, Xiaoli, Cao, Leiyu, Maimaitiming, Nuersimanguli, Qu, Chengcheng, Zhang, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective. Esophageal squamous-cell carcinoma (ESCC) is an aggressive malignant tumor, accounting for more than 90% of esophageal cancers. However, treatments such as surgical resection, radiotherapy, and chemotherapy are unable to achieve ideal clinical outcomes. The purpose of this study was to explore the effects of COQ10B on proliferation, apoptosis, migration, and invasion of esophageal squamous-cell carcinoma (ESCC) cells. Methods. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of COQ10B in ESCC and normal tissues and in ESCC cell lines (KYSE-150 and TE-1). MTT assay and flow cytometry were applied to investigate the effects of COQ10B shRNA lentivirus (LV-shCOQ10B) on ESCC cell proliferation and apoptosis, respectively. The effect of COQ10B silencing on ESCC cell migration and invasion was determined by wound healing assay and transwell invasion assay, respectively. Results. The expression of COQ10B mRNA in ESCC tissues was higher than that in surrounding tissues. The decreased COQ10B level in KYSE-150 and TE-1 cells by LV-shCOQ10B could inhibit cell proliferation, promote cell apoptosis, and reduce the ability of invasion and migration (all P
ISSN:1741-427X
1741-4288
DOI:10.1155/2022/6247824