Loading…

Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology

Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than micr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology 2022-07, Vol.49 (4), p.1
Main Authors: Rodriguez-Ocasio, Efrain, Khalid, Ammara, Truka, Charles J, Blenner, Mark A, Jarboe, Laura R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03
cites cdi_FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03
container_end_page
container_issue 4
container_start_page 1
container_title Journal of industrial microbiology & biotechnology
container_volume 49
creator Rodriguez-Ocasio, Efrain
Khalid, Ammara
Truka, Charles J
Blenner, Mark A
Jarboe, Laura R
description Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.
doi_str_mv 10.1093/jimb/kuac010
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9338885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A776331590</galeid><sourcerecordid>A776331590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03</originalsourceid><addsrcrecordid>eNptUU1rGzEQFSWhdt3e-gMWcskhG-tztXsphJDUhUAPbc9Cqx3ZcnYlV9o17L-PjE0hUOYww8ybx5t5CH0l-J7ghq33bmjXr5M2mOAPaEm4rEohmLjKNatkKTgTC_QppT3GWEhJP6IFE4zXErMl2vya4hHmItjCB2-CP4IfXfC6L2bQaUyFDbHo3cF1hfZdsZu7GIyObfBF68IIZudDH7bzZ3RtdZ_gyyWv0J_np9-Pm_Ll5_cfjw8vpeG0HktquSCWgKyYaKHhtrKm05oKCdhUrAFMCAHNGoEt5QITSmTH68oKRngNmK3QtzPvYWoH6EyWG3WvDtENOs4qaKfeT7zbqW04qoaxuq5FJri9EMTwd4I0qsElA32vPYQpKVpx3nBKCcnQmzN0q3tQztuQGc0Jrh5kvoAR0ZwU3f8HlaODweWPgnW5_27h7rxgYkgpgv2nnmB18lSdPFUXT9kbkbaUng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644942211</pqid></control><display><type>article</type><title>Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Rodriguez-Ocasio, Efrain ; Khalid, Ammara ; Truka, Charles J ; Blenner, Mark A ; Jarboe, Laura R</creator><creatorcontrib>Rodriguez-Ocasio, Efrain ; Khalid, Ammara ; Truka, Charles J ; Blenner, Mark A ; Jarboe, Laura R</creatorcontrib><description>Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1093/jimb/kuac010</identifier><identifier>PMID: 35348703</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Alcohols ; Amino acids ; Biotechnology ; Fatty acids ; Membrane lipids ; Metabolic Engineering and Synthetic Biology ; Phylogeny ; Surveys</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2022-07, Vol.49 (4), p.1</ispartof><rights>COPYRIGHT 2022 Oxford University Press</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Society of Industrial Microbiology and Biotechnology. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03</citedby><cites>FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03</cites><orcidid>0000-0002-6359-3670 ; 0000-0002-4294-4347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338885/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Rodriguez-Ocasio, Efrain</creatorcontrib><creatorcontrib>Khalid, Ammara</creatorcontrib><creatorcontrib>Truka, Charles J</creatorcontrib><creatorcontrib>Blenner, Mark A</creatorcontrib><creatorcontrib>Jarboe, Laura R</creatorcontrib><title>Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology</title><title>Journal of industrial microbiology &amp; biotechnology</title><description>Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.</description><subject>Alcohols</subject><subject>Amino acids</subject><subject>Biotechnology</subject><subject>Fatty acids</subject><subject>Membrane lipids</subject><subject>Metabolic Engineering and Synthetic Biology</subject><subject>Phylogeny</subject><subject>Surveys</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptUU1rGzEQFSWhdt3e-gMWcskhG-tztXsphJDUhUAPbc9Cqx3ZcnYlV9o17L-PjE0hUOYww8ybx5t5CH0l-J7ghq33bmjXr5M2mOAPaEm4rEohmLjKNatkKTgTC_QppT3GWEhJP6IFE4zXErMl2vya4hHmItjCB2-CP4IfXfC6L2bQaUyFDbHo3cF1hfZdsZu7GIyObfBF68IIZudDH7bzZ3RtdZ_gyyWv0J_np9-Pm_Ll5_cfjw8vpeG0HktquSCWgKyYaKHhtrKm05oKCdhUrAFMCAHNGoEt5QITSmTH68oKRngNmK3QtzPvYWoH6EyWG3WvDtENOs4qaKfeT7zbqW04qoaxuq5FJri9EMTwd4I0qsElA32vPYQpKVpx3nBKCcnQmzN0q3tQztuQGc0Jrh5kvoAR0ZwU3f8HlaODweWPgnW5_27h7rxgYkgpgv2nnmB18lSdPFUXT9kbkbaUng</recordid><startdate>20220730</startdate><enddate>20220730</enddate><creator>Rodriguez-Ocasio, Efrain</creator><creator>Khalid, Ammara</creator><creator>Truka, Charles J</creator><creator>Blenner, Mark A</creator><creator>Jarboe, Laura R</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6359-3670</orcidid><orcidid>https://orcid.org/0000-0002-4294-4347</orcidid></search><sort><creationdate>20220730</creationdate><title>Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology</title><author>Rodriguez-Ocasio, Efrain ; Khalid, Ammara ; Truka, Charles J ; Blenner, Mark A ; Jarboe, Laura R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohols</topic><topic>Amino acids</topic><topic>Biotechnology</topic><topic>Fatty acids</topic><topic>Membrane lipids</topic><topic>Metabolic Engineering and Synthetic Biology</topic><topic>Phylogeny</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Ocasio, Efrain</creatorcontrib><creatorcontrib>Khalid, Ammara</creatorcontrib><creatorcontrib>Truka, Charles J</creatorcontrib><creatorcontrib>Blenner, Mark A</creatorcontrib><creatorcontrib>Jarboe, Laura R</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez-Ocasio, Efrain</au><au>Khalid, Ammara</au><au>Truka, Charles J</au><au>Blenner, Mark A</au><au>Jarboe, Laura R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><date>2022-07-30</date><risdate>2022</risdate><volume>49</volume><issue>4</issue><spage>1</spage><pages>1-</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Nonconventional yeasts have an untapped potential to expand biotechnology and enable process development necessary for a circular economy. They are especially convenient for the field of lipid and hydrocarbon biotechnology because they offer faster growth than plants and easier scalability than microalgae and exhibit increased tolerance relative to some bacteria. The ability of industrial organisms to import and metabolically transform lipids and hydrocarbons is crucial in such applications. Here, we assessed the ability of 14 yeasts to utilize 18 model lipids and hydrocarbons from six functional groups and three carbon chain lengths. The studied strains covered 12 genera from nine families. Nine nonconventional yeasts performed better than Saccharomyces cerevisiae, the most common industrial yeast. Rhodotorula toruloides, Candida maltosa, Scheffersomyces stipitis, and Yarrowia lipolytica were observed to grow significantly better and on more types of lipids and lipid molecules than other strains. They were all able to utilize mid- to long-chain fatty acids, fatty alcohols, alkanes, alkenes, and dicarboxylic acids, including 28 previously unreported substrates across the four yeasts. Interestingly, a phylogenetic analysis showed a short evolutionary distance between the R. toruloides, C. maltosa, and S. stipitis, even though R. toruloides is classified under a different phylum. This work provides valuable insight into the lipid substrate range of nonconventional yeasts that can inform species selection decisions and viability of lipid feedstocks.</abstract><pub>Oxford University Press</pub><pmid>35348703</pmid><doi>10.1093/jimb/kuac010</doi><orcidid>https://orcid.org/0000-0002-6359-3670</orcidid><orcidid>https://orcid.org/0000-0002-4294-4347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2022-07, Vol.49 (4), p.1
issn 1367-5435
1476-5535
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9338885
source Oxford University Press Open Access; PubMed Central
subjects Alcohols
Amino acids
Biotechnology
Fatty acids
Membrane lipids
Metabolic Engineering and Synthetic Biology
Phylogeny
Surveys
title Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20of%20nonconventional%20yeasts%20for%20lipid%20and%20hydrocarbon%20biotechnology&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Rodriguez-Ocasio,%20Efrain&rft.date=2022-07-30&rft.volume=49&rft.issue=4&rft.spage=1&rft.pages=1-&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1093/jimb/kuac010&rft_dat=%3Cgale_pubme%3EA776331590%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-2f451f1e7635be94f6fcdaa257e0c639e0111ea3950f24501217d486f53148e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644942211&rft_id=info:pmid/35348703&rft_galeid=A776331590&rfr_iscdi=true