Loading…
Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils
Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces...
Saved in:
Published in: | Clinical & experimental metastasis 2022-08, Vol.39 (4), p.641-659 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3 |
container_end_page | 659 |
container_issue | 4 |
container_start_page | 641 |
container_title | Clinical & experimental metastasis |
container_volume | 39 |
creator | Costanzo-Garvey, Diane L. Case, Adam J. Watson, Gabrielle F. Alsamraae, Massar Chatterjee, Arpita Oberley-Deegan, Rebecca E. Dutta, Samikshan Abdalla, Maher Y. Kielian, Tammy Lindsey, Merry L. Cook, Leah M. |
description | Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression. |
doi_str_mv | 10.1007/s10585-022-10170-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9338904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668217978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3</originalsourceid><addsrcrecordid>eNp9kTFvFDEQhS0EIkfgD1CglWhoTMb2em03SCgCEilSKKCisHze2cTRnn3Y3ujy73G4EEIKKhfvm-c38wh5zeA9A1BHhYHUkgLnlAFTQHdPyIpJJajianhKVsAHTkEbfUBelHIFAL1S-jk5EHKAXsKwIj--5lSqq9h5Fz3mzo1j8DWk2NXUpV0YXQ3X2JWasZRuxClELF3BWEITQr255VysgdZlk3IXcak5bS_DXF6SZ5ObC766ew_J98-fvh2f0LPzL6fHH8-o71VfKfN9z_iAuhdKGzXhtAanhRcM5Voaw6fJgVGshZceHQfvxFoiKslMLycvDsmHve92WW9w9BhrdrPd5rBx-cYmF-y_SgyX9iJdWyOENtA3g3d3Bjn9XLBUuwnF4zy7iGkplg-D5kwZpRv69hF6lZYc23qNMoMU0BI3iu8p365bMk73YRjY2-7svjvburO_u7O7NvTm4Rr3I3_KaoDYA6VJ8QLz37__Y_sLNXunlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696530599</pqid></control><display><type>article</type><title>Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils</title><source>Springer Nature</source><creator>Costanzo-Garvey, Diane L. ; Case, Adam J. ; Watson, Gabrielle F. ; Alsamraae, Massar ; Chatterjee, Arpita ; Oberley-Deegan, Rebecca E. ; Dutta, Samikshan ; Abdalla, Maher Y. ; Kielian, Tammy ; Lindsey, Merry L. ; Cook, Leah M.</creator><creatorcontrib>Costanzo-Garvey, Diane L. ; Case, Adam J. ; Watson, Gabrielle F. ; Alsamraae, Massar ; Chatterjee, Arpita ; Oberley-Deegan, Rebecca E. ; Dutta, Samikshan ; Abdalla, Maher Y. ; Kielian, Tammy ; Lindsey, Merry L. ; Cook, Leah M.</creatorcontrib><description>Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.</description><identifier>ISSN: 0262-0898</identifier><identifier>EISSN: 1573-7276</identifier><identifier>DOI: 10.1007/s10585-022-10170-x</identifier><identifier>PMID: 35604506</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Addictions ; Antioxidants ; Biomedical and Life Sciences ; Biomedicine ; Bone cancer ; Bone growth ; Bone marrow ; Bone tumors ; Cancer Research ; CYBB protein ; Depletion ; Gene sequencing ; Glutathione ; Hematology ; Immune response ; Leukocytes (neutrophilic) ; Metastases ; Metastasis ; NAD(P)H oxidase ; Neutrophils ; Oncology ; Oxidative stress ; Phagocytes ; Prostate cancer ; Reactive oxygen species ; Research Paper ; Sequence analysis ; Stromal cells ; Surgical Oncology ; Transcriptomics</subject><ispartof>Clinical & experimental metastasis, 2022-08, Vol.39 (4), p.641-659</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3</citedby><cites>FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3</cites><orcidid>0000-0002-9996-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35604506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costanzo-Garvey, Diane L.</creatorcontrib><creatorcontrib>Case, Adam J.</creatorcontrib><creatorcontrib>Watson, Gabrielle F.</creatorcontrib><creatorcontrib>Alsamraae, Massar</creatorcontrib><creatorcontrib>Chatterjee, Arpita</creatorcontrib><creatorcontrib>Oberley-Deegan, Rebecca E.</creatorcontrib><creatorcontrib>Dutta, Samikshan</creatorcontrib><creatorcontrib>Abdalla, Maher Y.</creatorcontrib><creatorcontrib>Kielian, Tammy</creatorcontrib><creatorcontrib>Lindsey, Merry L.</creatorcontrib><creatorcontrib>Cook, Leah M.</creatorcontrib><title>Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils</title><title>Clinical & experimental metastasis</title><addtitle>Clin Exp Metastasis</addtitle><addtitle>Clin Exp Metastasis</addtitle><description>Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.</description><subject>Addictions</subject><subject>Antioxidants</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone cancer</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone tumors</subject><subject>Cancer Research</subject><subject>CYBB protein</subject><subject>Depletion</subject><subject>Gene sequencing</subject><subject>Glutathione</subject><subject>Hematology</subject><subject>Immune response</subject><subject>Leukocytes (neutrophilic)</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>NAD(P)H oxidase</subject><subject>Neutrophils</subject><subject>Oncology</subject><subject>Oxidative stress</subject><subject>Phagocytes</subject><subject>Prostate cancer</subject><subject>Reactive oxygen species</subject><subject>Research Paper</subject><subject>Sequence analysis</subject><subject>Stromal cells</subject><subject>Surgical Oncology</subject><subject>Transcriptomics</subject><issn>0262-0898</issn><issn>1573-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kTFvFDEQhS0EIkfgD1CglWhoTMb2em03SCgCEilSKKCisHze2cTRnn3Y3ujy73G4EEIKKhfvm-c38wh5zeA9A1BHhYHUkgLnlAFTQHdPyIpJJajianhKVsAHTkEbfUBelHIFAL1S-jk5EHKAXsKwIj--5lSqq9h5Fz3mzo1j8DWk2NXUpV0YXQ3X2JWasZRuxClELF3BWEITQr255VysgdZlk3IXcak5bS_DXF6SZ5ObC766ew_J98-fvh2f0LPzL6fHH8-o71VfKfN9z_iAuhdKGzXhtAanhRcM5Voaw6fJgVGshZceHQfvxFoiKslMLycvDsmHve92WW9w9BhrdrPd5rBx-cYmF-y_SgyX9iJdWyOENtA3g3d3Bjn9XLBUuwnF4zy7iGkplg-D5kwZpRv69hF6lZYc23qNMoMU0BI3iu8p365bMk73YRjY2-7svjvburO_u7O7NvTm4Rr3I3_KaoDYA6VJ8QLz37__Y_sLNXunlQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Costanzo-Garvey, Diane L.</creator><creator>Case, Adam J.</creator><creator>Watson, Gabrielle F.</creator><creator>Alsamraae, Massar</creator><creator>Chatterjee, Arpita</creator><creator>Oberley-Deegan, Rebecca E.</creator><creator>Dutta, Samikshan</creator><creator>Abdalla, Maher Y.</creator><creator>Kielian, Tammy</creator><creator>Lindsey, Merry L.</creator><creator>Cook, Leah M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9996-7419</orcidid></search><sort><creationdate>20220801</creationdate><title>Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils</title><author>Costanzo-Garvey, Diane L. ; Case, Adam J. ; Watson, Gabrielle F. ; Alsamraae, Massar ; Chatterjee, Arpita ; Oberley-Deegan, Rebecca E. ; Dutta, Samikshan ; Abdalla, Maher Y. ; Kielian, Tammy ; Lindsey, Merry L. ; Cook, Leah M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addictions</topic><topic>Antioxidants</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone cancer</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone tumors</topic><topic>Cancer Research</topic><topic>CYBB protein</topic><topic>Depletion</topic><topic>Gene sequencing</topic><topic>Glutathione</topic><topic>Hematology</topic><topic>Immune response</topic><topic>Leukocytes (neutrophilic)</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>NAD(P)H oxidase</topic><topic>Neutrophils</topic><topic>Oncology</topic><topic>Oxidative stress</topic><topic>Phagocytes</topic><topic>Prostate cancer</topic><topic>Reactive oxygen species</topic><topic>Research Paper</topic><topic>Sequence analysis</topic><topic>Stromal cells</topic><topic>Surgical Oncology</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costanzo-Garvey, Diane L.</creatorcontrib><creatorcontrib>Case, Adam J.</creatorcontrib><creatorcontrib>Watson, Gabrielle F.</creatorcontrib><creatorcontrib>Alsamraae, Massar</creatorcontrib><creatorcontrib>Chatterjee, Arpita</creatorcontrib><creatorcontrib>Oberley-Deegan, Rebecca E.</creatorcontrib><creatorcontrib>Dutta, Samikshan</creatorcontrib><creatorcontrib>Abdalla, Maher Y.</creatorcontrib><creatorcontrib>Kielian, Tammy</creatorcontrib><creatorcontrib>Lindsey, Merry L.</creatorcontrib><creatorcontrib>Cook, Leah M.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical & experimental metastasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costanzo-Garvey, Diane L.</au><au>Case, Adam J.</au><au>Watson, Gabrielle F.</au><au>Alsamraae, Massar</au><au>Chatterjee, Arpita</au><au>Oberley-Deegan, Rebecca E.</au><au>Dutta, Samikshan</au><au>Abdalla, Maher Y.</au><au>Kielian, Tammy</au><au>Lindsey, Merry L.</au><au>Cook, Leah M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils</atitle><jtitle>Clinical & experimental metastasis</jtitle><stitle>Clin Exp Metastasis</stitle><addtitle>Clin Exp Metastasis</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>39</volume><issue>4</issue><spage>641</spage><epage>659</epage><pages>641-659</pages><issn>0262-0898</issn><eissn>1573-7276</eissn><abstract>Bone metastatic prostate cancer (BM-PCa) remains one of the most difficult cancers to treat due to the complex interactions of cancer and stromal cells. We previously showed that bone marrow neutrophils elicit an anti-tumor immune response against BM-PCa. Further, we demonstrated that BM-PCa induces neutrophil oxidative burst, which has previously been identified to promote primary tumor growth of other cancers, and a goal of this study was to define the importance of neutrophil oxidative burst in BM-PCa. To do this, we first examined the impact of depletion of reactive oxygen species (ROS), via systemic deletion of the main source of ROS in phagocytes, NADPH oxidase (Nox)2, which we found to suppress prostate tumor growth in bone. Further, using pharmacologic ROS inhibitors and Nox2-null neutrophils, we found that ROS depletion specifically suppresses growth of androgen-insensitive prostate cancer cells. Upon closer examination using bulk RNA sequencing analysis, we identified that metastatic prostate cancer induces neutrophil transcriptomic changes that activates pathways associated with response to oxidative stress. In tandem, prostate cancer cells resist neutrophil anti-tumor response via extracellular (i.e., regulation of neutrophils) and intracellular alterations of glutathione synthesis, the most potent cellular antioxidant. These findings demonstrate that BM-PCa thrive under oxidative stress conditions and such that regulation of ROS and glutathione programming could be leveraged for targeting of BM-PCa progression.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35604506</pmid><doi>10.1007/s10585-022-10170-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9996-7419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-0898 |
ispartof | Clinical & experimental metastasis, 2022-08, Vol.39 (4), p.641-659 |
issn | 0262-0898 1573-7276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9338904 |
source | Springer Nature |
subjects | Addictions Antioxidants Biomedical and Life Sciences Biomedicine Bone cancer Bone growth Bone marrow Bone tumors Cancer Research CYBB protein Depletion Gene sequencing Glutathione Hematology Immune response Leukocytes (neutrophilic) Metastases Metastasis NAD(P)H oxidase Neutrophils Oncology Oxidative stress Phagocytes Prostate cancer Reactive oxygen species Research Paper Sequence analysis Stromal cells Surgical Oncology Transcriptomics |
title | Prostate cancer addiction to oxidative stress defines sensitivity to anti-tumor neutrophils |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostate%20cancer%20addiction%20to%20oxidative%20stress%20defines%20sensitivity%20to%20anti-tumor%20neutrophils&rft.jtitle=Clinical%20&%20experimental%20metastasis&rft.au=Costanzo-Garvey,%20Diane%20L.&rft.date=2022-08-01&rft.volume=39&rft.issue=4&rft.spage=641&rft.epage=659&rft.pages=641-659&rft.issn=0262-0898&rft.eissn=1573-7276&rft_id=info:doi/10.1007/s10585-022-10170-x&rft_dat=%3Cproquest_pubme%3E2668217978%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-1c44126e8437897fefb0a83c31e5b5992ffa09710475cea20ca3b5ee751945fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696530599&rft_id=info:pmid/35604506&rfr_iscdi=true |