Loading…

Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors

Abstract Motivation Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating th...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2022-08, Vol.38 (15), p.3677-3683
Main Authors: Zheng, Lily, Niknafs, Noushin, Wood, Laura D, Karchin, Rachel, Scharpf, Robert B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363
cites cdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363
container_end_page 3683
container_issue 15
container_start_page 3677
container_title Bioinformatics
container_volume 38
creator Zheng, Lily
Niknafs, Noushin
Wood, Laura D
Karchin, Rachel
Scharpf, Robert B
description Abstract Motivation Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. Results We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. Availability and implementation https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btac367
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9344857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac367</oup_id><sourcerecordid>2672319307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</originalsourceid><addsrcrecordid>eNqNkU1PHSEUhkljUz_av2Bm6WYqDB8zbEyMsa2JiRvddEMODFxpZuAWGBP_vUzu1ejOFeSc930OhxehU4J_EizpufbRBxfTDMWbfK4LGCr6L-iIMIHbDnN5UO-11LIB00N0nPM_jDlhjH1Dh5QL1g1SHqG_17n4FRJDE11jIBibGmOnqXEJzFrPDYSxMVMMtinJ2lw7cW7mZSq-TXazWrP9v9hgfNislLLMMeXv6KuDKdsf-_MEPfy6vr_6097e_b65urxtDeOitNpSxnoJvWbjAECwkAREz5wYQXecCABptBPD2Bvba0cddhoIHziXFKigJ-hix90uerajsaEkmNQ21b3Ss4rg1cdO8I9qE5-UrIMH3lfA2R6QYl0jFzX7vH4BBBuXrDrRd5RIilep2ElNijkn697GEKzWYNTHYNQ-mGo8ff_IN9trElVAdoK4bD8LfQFStqSx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672319307</pqid></control><display><type>article</type><title>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</title><source>Oxford Journals Open Access Collection</source><creator>Zheng, Lily ; Niknafs, Noushin ; Wood, Laura D ; Karchin, Rachel ; Scharpf, Robert B</creator><contributor>Robinson, Peter</contributor><creatorcontrib>Zheng, Lily ; Niknafs, Noushin ; Wood, Laura D ; Karchin, Rachel ; Scharpf, Robert B ; Robinson, Peter</creatorcontrib><description>Abstract Motivation Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. Results We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. Availability and implementation https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac367</identifier><identifier>PMID: 35642899</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Clone Cells ; Cross-Sectional Studies ; Humans ; Mutation ; Neoplasms - genetics ; Original Papers ; Phylogeny ; Sequence Analysis ; Software</subject><ispartof>Bioinformatics, 2022-08, Vol.38 (15), p.3677-3683</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</citedby><cites>FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</cites><orcidid>0000-0003-4702-2656 ; 0000-0002-5069-1239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344857/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344857/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27923,27924,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac367$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35642899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robinson, Peter</contributor><creatorcontrib>Zheng, Lily</creatorcontrib><creatorcontrib>Niknafs, Noushin</creatorcontrib><creatorcontrib>Wood, Laura D</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Scharpf, Robert B</creatorcontrib><title>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. Results We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. Availability and implementation https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Bayes Theorem</subject><subject>Clone Cells</subject><subject>Cross-Sectional Studies</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Original Papers</subject><subject>Phylogeny</subject><subject>Sequence Analysis</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PHSEUhkljUz_av2Bm6WYqDB8zbEyMsa2JiRvddEMODFxpZuAWGBP_vUzu1ejOFeSc930OhxehU4J_EizpufbRBxfTDMWbfK4LGCr6L-iIMIHbDnN5UO-11LIB00N0nPM_jDlhjH1Dh5QL1g1SHqG_17n4FRJDE11jIBibGmOnqXEJzFrPDYSxMVMMtinJ2lw7cW7mZSq-TXazWrP9v9hgfNislLLMMeXv6KuDKdsf-_MEPfy6vr_6097e_b65urxtDeOitNpSxnoJvWbjAECwkAREz5wYQXecCABptBPD2Bvba0cddhoIHziXFKigJ-hix90uerajsaEkmNQ21b3Ss4rg1cdO8I9qE5-UrIMH3lfA2R6QYl0jFzX7vH4BBBuXrDrRd5RIilep2ElNijkn697GEKzWYNTHYNQ-mGo8ff_IN9trElVAdoK4bD8LfQFStqSx</recordid><startdate>20220802</startdate><enddate>20220802</enddate><creator>Zheng, Lily</creator><creator>Niknafs, Noushin</creator><creator>Wood, Laura D</creator><creator>Karchin, Rachel</creator><creator>Scharpf, Robert B</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4702-2656</orcidid><orcidid>https://orcid.org/0000-0002-5069-1239</orcidid></search><sort><creationdate>20220802</creationdate><title>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</title><author>Zheng, Lily ; Niknafs, Noushin ; Wood, Laura D ; Karchin, Rachel ; Scharpf, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes Theorem</topic><topic>Clone Cells</topic><topic>Cross-Sectional Studies</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Original Papers</topic><topic>Phylogeny</topic><topic>Sequence Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lily</creatorcontrib><creatorcontrib>Niknafs, Noushin</creatorcontrib><creatorcontrib>Wood, Laura D</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Scharpf, Robert B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Lily</au><au>Niknafs, Noushin</au><au>Wood, Laura D</au><au>Karchin, Rachel</au><au>Scharpf, Robert B</au><au>Robinson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-08-02</date><risdate>2022</risdate><volume>38</volume><issue>15</issue><spage>3677</spage><epage>3683</epage><pages>3677-3683</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges. Results We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases. Availability and implementation https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35642899</pmid><doi>10.1093/bioinformatics/btac367</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4702-2656</orcidid><orcidid>https://orcid.org/0000-0002-5069-1239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2022-08, Vol.38 (15), p.3677-3683
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9344857
source Oxford Journals Open Access Collection
subjects Bayes Theorem
Clone Cells
Cross-Sectional Studies
Humans
Mutation
Neoplasms - genetics
Original Papers
Phylogeny
Sequence Analysis
Software
title Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20cancer%20cell%20fractions%20and%20clone%20trees%20from%20multi-region%20sequencing%20of%20tumors&rft.jtitle=Bioinformatics&rft.au=Zheng,%20Lily&rft.date=2022-08-02&rft.volume=38&rft.issue=15&rft.spage=3677&rft.epage=3683&rft.pages=3677-3683&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac367&rft_dat=%3Cproquest_TOX%3E2672319307%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672319307&rft_id=info:pmid/35642899&rft_oup_id=10.1093/bioinformatics/btac367&rfr_iscdi=true