Loading…
Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors
Abstract Motivation Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating th...
Saved in:
Published in: | Bioinformatics 2022-08, Vol.38 (15), p.3677-3683 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363 |
container_end_page | 3683 |
container_issue | 15 |
container_start_page | 3677 |
container_title | Bioinformatics |
container_volume | 38 |
creator | Zheng, Lily Niknafs, Noushin Wood, Laura D Karchin, Rachel Scharpf, Robert B |
description | Abstract
Motivation
Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges.
Results
We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases.
Availability and implementation
https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac367 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9344857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac367</oup_id><sourcerecordid>2672319307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</originalsourceid><addsrcrecordid>eNqNkU1PHSEUhkljUz_av2Bm6WYqDB8zbEyMsa2JiRvddEMODFxpZuAWGBP_vUzu1ejOFeSc930OhxehU4J_EizpufbRBxfTDMWbfK4LGCr6L-iIMIHbDnN5UO-11LIB00N0nPM_jDlhjH1Dh5QL1g1SHqG_17n4FRJDE11jIBibGmOnqXEJzFrPDYSxMVMMtinJ2lw7cW7mZSq-TXazWrP9v9hgfNislLLMMeXv6KuDKdsf-_MEPfy6vr_6097e_b65urxtDeOitNpSxnoJvWbjAECwkAREz5wYQXecCABptBPD2Bvba0cddhoIHziXFKigJ-hix90uerajsaEkmNQ21b3Ss4rg1cdO8I9qE5-UrIMH3lfA2R6QYl0jFzX7vH4BBBuXrDrRd5RIilep2ElNijkn697GEKzWYNTHYNQ-mGo8ff_IN9trElVAdoK4bD8LfQFStqSx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672319307</pqid></control><display><type>article</type><title>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</title><source>Oxford Journals Open Access Collection</source><creator>Zheng, Lily ; Niknafs, Noushin ; Wood, Laura D ; Karchin, Rachel ; Scharpf, Robert B</creator><contributor>Robinson, Peter</contributor><creatorcontrib>Zheng, Lily ; Niknafs, Noushin ; Wood, Laura D ; Karchin, Rachel ; Scharpf, Robert B ; Robinson, Peter</creatorcontrib><description>Abstract
Motivation
Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges.
Results
We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases.
Availability and implementation
https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac367</identifier><identifier>PMID: 35642899</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayes Theorem ; Clone Cells ; Cross-Sectional Studies ; Humans ; Mutation ; Neoplasms - genetics ; Original Papers ; Phylogeny ; Sequence Analysis ; Software</subject><ispartof>Bioinformatics, 2022-08, Vol.38 (15), p.3677-3683</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</citedby><cites>FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</cites><orcidid>0000-0003-4702-2656 ; 0000-0002-5069-1239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344857/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344857/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27923,27924,53790,53792</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac367$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35642899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Robinson, Peter</contributor><creatorcontrib>Zheng, Lily</creatorcontrib><creatorcontrib>Niknafs, Noushin</creatorcontrib><creatorcontrib>Wood, Laura D</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Scharpf, Robert B</creatorcontrib><title>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges.
Results
We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases.
Availability and implementation
https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Bayes Theorem</subject><subject>Clone Cells</subject><subject>Cross-Sectional Studies</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Original Papers</subject><subject>Phylogeny</subject><subject>Sequence Analysis</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PHSEUhkljUz_av2Bm6WYqDB8zbEyMsa2JiRvddEMODFxpZuAWGBP_vUzu1ejOFeSc930OhxehU4J_EizpufbRBxfTDMWbfK4LGCr6L-iIMIHbDnN5UO-11LIB00N0nPM_jDlhjH1Dh5QL1g1SHqG_17n4FRJDE11jIBibGmOnqXEJzFrPDYSxMVMMtinJ2lw7cW7mZSq-TXazWrP9v9hgfNislLLMMeXv6KuDKdsf-_MEPfy6vr_6097e_b65urxtDeOitNpSxnoJvWbjAECwkAREz5wYQXecCABptBPD2Bvba0cddhoIHziXFKigJ-hix90uerajsaEkmNQ21b3Ss4rg1cdO8I9qE5-UrIMH3lfA2R6QYl0jFzX7vH4BBBuXrDrRd5RIilep2ElNijkn697GEKzWYNTHYNQ-mGo8ff_IN9trElVAdoK4bD8LfQFStqSx</recordid><startdate>20220802</startdate><enddate>20220802</enddate><creator>Zheng, Lily</creator><creator>Niknafs, Noushin</creator><creator>Wood, Laura D</creator><creator>Karchin, Rachel</creator><creator>Scharpf, Robert B</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4702-2656</orcidid><orcidid>https://orcid.org/0000-0002-5069-1239</orcidid></search><sort><creationdate>20220802</creationdate><title>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</title><author>Zheng, Lily ; Niknafs, Noushin ; Wood, Laura D ; Karchin, Rachel ; Scharpf, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes Theorem</topic><topic>Clone Cells</topic><topic>Cross-Sectional Studies</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Original Papers</topic><topic>Phylogeny</topic><topic>Sequence Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lily</creatorcontrib><creatorcontrib>Niknafs, Noushin</creatorcontrib><creatorcontrib>Wood, Laura D</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Scharpf, Robert B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Lily</au><au>Niknafs, Noushin</au><au>Wood, Laura D</au><au>Karchin, Rachel</au><au>Scharpf, Robert B</au><au>Robinson, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-08-02</date><risdate>2022</risdate><volume>38</volume><issue>15</issue><spage>3677</spage><epage>3683</epage><pages>3677-3683</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Multi-region sequencing of solid tumors can improve our understanding of intratumor subclonal diversity and the evolutionary history of mutational events. Due to uncertainty in clonal composition and the multitude of possible ancestral relationships between clones, elucidating the most probable relationships from bulk tumor sequencing poses statistical and computational challenges.
Results
We developed a Bayesian hierarchical model called PICTograph to model uncertainty in assigning mutations to subclones, to enable posterior distributions of cancer cell fractions (CCFs) and to visualize the most probable ancestral relationships between subclones. Compared with available methods, PICTograph provided more consistent and accurate estimates of CCFs and improved tree inference over a range of simulated clonal diversity. Application of PICTograph to multi-region whole-exome sequencing of tumors from individuals with pancreatic cancer precursor lesions confirmed known early-occurring mutations and indicated substantial molecular diversity, including 6–12 distinct subclones and intra-sample mixing of subclones. Using ensemble-based visualizations, we highlight highly probable evolutionary relationships recovered in multiple models. PICTograph provides a useful approximation to evolutionary inference from cross-sectional multi-region sequencing, particularly for complex cases.
Availability and implementation
https://github.com/KarchinLab/pictograph. The data underlying this article will be shared on reasonable request to the corresponding author.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35642899</pmid><doi>10.1093/bioinformatics/btac367</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4702-2656</orcidid><orcidid>https://orcid.org/0000-0002-5069-1239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2022-08, Vol.38 (15), p.3677-3683 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9344857 |
source | Oxford Journals Open Access Collection |
subjects | Bayes Theorem Clone Cells Cross-Sectional Studies Humans Mutation Neoplasms - genetics Original Papers Phylogeny Sequence Analysis Software |
title | Estimation of cancer cell fractions and clone trees from multi-region sequencing of tumors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20cancer%20cell%20fractions%20and%20clone%20trees%20from%20multi-region%20sequencing%20of%20tumors&rft.jtitle=Bioinformatics&rft.au=Zheng,%20Lily&rft.date=2022-08-02&rft.volume=38&rft.issue=15&rft.spage=3677&rft.epage=3683&rft.pages=3677-3683&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac367&rft_dat=%3Cproquest_TOX%3E2672319307%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-be34479a7b4d8aa10691a674f6dab2516aa9cbf68d7ce7bf3f0fba1585593a363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2672319307&rft_id=info:pmid/35642899&rft_oup_id=10.1093/bioinformatics/btac367&rfr_iscdi=true |