Loading…

Mass Difference Matching Unfolds Hidden Molecular Structures of Dissolved Organic Matter

Ultrahigh-resolution Fourier transform mass spectrometry (FTMS) has revealed unprecedented details of natural complex mixtures such as dissolved organic matter (DOM) on a molecular formula level, but we lack approaches to access the underlying structural complexity. We here explore the hypothesis th...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2022-08, Vol.56 (15), p.11027-11040
Main Authors: Simon, Carsten, Dührkop, Kai, Petras, Daniel, Roth, Vanessa-Nina, Böcker, Sebastian, Dorrestein, Pieter C., Gleixner, Gerd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrahigh-resolution Fourier transform mass spectrometry (FTMS) has revealed unprecedented details of natural complex mixtures such as dissolved organic matter (DOM) on a molecular formula level, but we lack approaches to access the underlying structural complexity. We here explore the hypothesis that every DOM precursor ion is potentially linked with all emerging product ions in FTMS2 experiments. The resulting mass difference (Δm) matrix is deconvoluted to isolate individual precursor ion Δm profiles and matched with structural information, which was derived from 42 Δm features from 14 in-house reference compounds and a global set of 11 477 Δm features with assigned structure specificities, using a dataset of ∼18 000 unique structures. We show that Δm matching is highly sensitive in predicting potential precursor ion identities in terms of molecular and structural composition. Additionally, the approach identified unresolved precursor ions and missing elements in molecular formula annotation (P, Cl, F). Our study provides first results on how Δm matching refines structural annotations in van Krevelen space but simultaneously demonstrates the wide overlap between potential structural classes. We show that this effect is likely driven by chemodiversity and offers an explanation for the observed ubiquitous presence of molecules in the center of the van Krevelen space. Our promising first results suggest that Δm matching can both unfold the structural information encrypted in DOM and assess the quality of FTMS-derived molecular formulas of complex mixtures in general.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c01332