Loading…

Application of ion mobility spectrometry for the determination of tramadol in biological samples

In this study, a simple and rapid ion mobility spectrometry (IMS) method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and...

Full description

Saved in:
Bibliographic Details
Published in:Yàowu shi͡p︡in fenxi 2014-12, Vol.22 (4), p.500-504
Main Authors: Sheibani, Ali, Haghpazir, Najmeh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a simple and rapid ion mobility spectrometry (IMS) method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs). Under optimum conditions, the calibration curves were linear within two orders of magnitude with R2 ≥ 0.998 for the determination of tramadol in human plasma, saliva, serum, and urine samples. The limits of detection and the limits of quantitation were between 0.1 and 0.3 and 0.3 and 1 ng/mL, respectively. The relative standard deviations were between 7.5 and 8.8%. The recovery results (90–103.9%) indicate that the proposed method can be applied for tramadol analysis in different biological samples.
ISSN:1021-9498
2224-6614
DOI:10.1016/j.jfda.2014.02.001