Loading…
Prediction of Dichloroethene Concentration in the Groundwater of a Contaminated Site Using XGBoost and LSTM
Chlorinated aliphatic hydrocarbons (CAHs) are widely used in agriculture and industries and have become one of the most common groundwater contaminations. With the excellent performance of the deep learning method in predicting, LSTM and XGBoost were used to forecast dichloroethene (DCE) concentrati...
Saved in:
Published in: | International journal of environmental research and public health 2022-07, Vol.19 (15), p.9374 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chlorinated aliphatic hydrocarbons (CAHs) are widely used in agriculture and industries and have become one of the most common groundwater contaminations. With the excellent performance of the deep learning method in predicting, LSTM and XGBoost were used to forecast dichloroethene (DCE) concentrations in a pesticide-contaminated site undergoing natural attenuation. The input variables included BTEX, vinyl chloride (VC), and five water quality indicators. In this study, the predictive performances of long short-term memory (LSTM) and extreme gradient boosting (XGBoost) were compared, and the influences of variables on models’ performances were evaluated. The results indicated XGBoost was more likely to capture DCE variation and was robust in high values, while the LSTM model presented better accuracy for all wells. The well with higher DCE concentrations would lower the model’s accuracy, and its influence was more evident in XGBoost than LSTM. The explanation of the SHapley Additive exPlanations (SHAP) value of each variable indicated high consistency with the rules of biodegradation in the real environment. LSTM and XGBoost could predict DCE concentrations through only using water quality variables, and LSTM performed better than XGBoost. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph19159374 |