Loading…
Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH
The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained...
Saved in:
Published in: | Polymers 2022-08, Vol.14 (15), p.3151 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3 |
container_end_page | |
container_issue | 15 |
container_start_page | 3151 |
container_title | Polymers |
container_volume | 14 |
creator | Peñuñuri-Miranda, Omar Olivas-Martinez, Miguel Ibarra-Espinoza, José Alberto Rodríguez-Córdova, Rosalva Josefina Hernández-Giottonini, Karol Yesenia Fernández-Quiroz, Daniel Zavala-Rivera, Paul Lucero-Acuña, Armando |
description | The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications. |
doi_str_mv | 10.3390/polym14153151 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702180806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3</originalsourceid><addsrcrecordid>eNpdkcFv1TAMxiMEYtPYkXskLlwKTtMm7QUJjbE9aRrTGOfITR3I1DYlSZHef788bUIMX_xJ_vmzLTP2VsAHKXv4uIZpP4tGtFK04gU7rkHLqpEKXv6jj9hpSvdQommVEvo1O5JtX6Rqjhl9XzH7kGleQ8SJ3xVBEfMWiX_xKUc_bKW-8OD49e6W72LE0WOmkd-U4es-xjARv8YlrBiztxMljsvIz50jm9Ohb718w145nBKdPuUT9uPr-d3ZZXX17WJ39vmqsrXucqXcgFIJ2RCOqnfCKteBE30Pqq9BdhYdYEcglSYr5NDXTtT1iK3TBKod5An79Oi7bsNMo6Ull6PMGv2McW8CevO8svhf5mf4Y3qphYCuGLx_Mojh90Ypm9knS9OEC4UtmVpDLTroQBX03X_ofdjiUs47UKBbDa0sVPVI2RhSiuT-LiPAHH5onv1QPgCpuI_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700757053</pqid></control><display><type>article</type><title>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Peñuñuri-Miranda, Omar ; Olivas-Martinez, Miguel ; Ibarra-Espinoza, José Alberto ; Rodríguez-Córdova, Rosalva Josefina ; Hernández-Giottonini, Karol Yesenia ; Fernández-Quiroz, Daniel ; Zavala-Rivera, Paul ; Lucero-Acuña, Armando</creator><creatorcontrib>Peñuñuri-Miranda, Omar ; Olivas-Martinez, Miguel ; Ibarra-Espinoza, José Alberto ; Rodríguez-Córdova, Rosalva Josefina ; Hernández-Giottonini, Karol Yesenia ; Fernández-Quiroz, Daniel ; Zavala-Rivera, Paul ; Lucero-Acuña, Armando</creatorcontrib><description>The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14153151</identifier><identifier>PMID: 35956664</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cancer therapies ; Chemical synthesis ; Conduction heating ; Conductive heat transfer ; Diameters ; Efficiency ; Experiments ; Heat generation ; Heat transfer ; Heat transfer coefficients ; Irradiation ; Laser beam heating ; Lasers ; Nanoparticles ; Polymerization ; Polymers ; Polypyrroles ; Polyvinyl alcohol ; Temperature ; Temperature distribution ; Temperature profiles ; Three dimensional analysis ; Water absorption ; Zeta potential</subject><ispartof>Polymers, 2022-08, Vol.14 (15), p.3151</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3</cites><orcidid>0000-0001-5669-4011 ; 0000-0002-3927-0556 ; 0000-0002-2390-2344 ; 0000-0002-2331-9351 ; 0000-0001-6464-2246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700757053/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700757053?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Peñuñuri-Miranda, Omar</creatorcontrib><creatorcontrib>Olivas-Martinez, Miguel</creatorcontrib><creatorcontrib>Ibarra-Espinoza, José Alberto</creatorcontrib><creatorcontrib>Rodríguez-Córdova, Rosalva Josefina</creatorcontrib><creatorcontrib>Hernández-Giottonini, Karol Yesenia</creatorcontrib><creatorcontrib>Fernández-Quiroz, Daniel</creatorcontrib><creatorcontrib>Zavala-Rivera, Paul</creatorcontrib><creatorcontrib>Lucero-Acuña, Armando</creatorcontrib><title>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</title><title>Polymers</title><description>The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.</description><subject>Cancer therapies</subject><subject>Chemical synthesis</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Diameters</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Irradiation</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Polyvinyl alcohol</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Three dimensional analysis</subject><subject>Water absorption</subject><subject>Zeta potential</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkcFv1TAMxiMEYtPYkXskLlwKTtMm7QUJjbE9aRrTGOfITR3I1DYlSZHef788bUIMX_xJ_vmzLTP2VsAHKXv4uIZpP4tGtFK04gU7rkHLqpEKXv6jj9hpSvdQommVEvo1O5JtX6Rqjhl9XzH7kGleQ8SJ3xVBEfMWiX_xKUc_bKW-8OD49e6W72LE0WOmkd-U4es-xjARv8YlrBiztxMljsvIz50jm9Ohb718w145nBKdPuUT9uPr-d3ZZXX17WJ39vmqsrXucqXcgFIJ2RCOqnfCKteBE30Pqq9BdhYdYEcglSYr5NDXTtT1iK3TBKod5An79Oi7bsNMo6Ull6PMGv2McW8CevO8svhf5mf4Y3qphYCuGLx_Mojh90Ypm9knS9OEC4UtmVpDLTroQBX03X_ofdjiUs47UKBbDa0sVPVI2RhSiuT-LiPAHH5onv1QPgCpuI_S</recordid><startdate>20220802</startdate><enddate>20220802</enddate><creator>Peñuñuri-Miranda, Omar</creator><creator>Olivas-Martinez, Miguel</creator><creator>Ibarra-Espinoza, José Alberto</creator><creator>Rodríguez-Córdova, Rosalva Josefina</creator><creator>Hernández-Giottonini, Karol Yesenia</creator><creator>Fernández-Quiroz, Daniel</creator><creator>Zavala-Rivera, Paul</creator><creator>Lucero-Acuña, Armando</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5669-4011</orcidid><orcidid>https://orcid.org/0000-0002-3927-0556</orcidid><orcidid>https://orcid.org/0000-0002-2390-2344</orcidid><orcidid>https://orcid.org/0000-0002-2331-9351</orcidid><orcidid>https://orcid.org/0000-0001-6464-2246</orcidid></search><sort><creationdate>20220802</creationdate><title>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</title><author>Peñuñuri-Miranda, Omar ; Olivas-Martinez, Miguel ; Ibarra-Espinoza, José Alberto ; Rodríguez-Córdova, Rosalva Josefina ; Hernández-Giottonini, Karol Yesenia ; Fernández-Quiroz, Daniel ; Zavala-Rivera, Paul ; Lucero-Acuña, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer therapies</topic><topic>Chemical synthesis</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Diameters</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Irradiation</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Polyvinyl alcohol</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Three dimensional analysis</topic><topic>Water absorption</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peñuñuri-Miranda, Omar</creatorcontrib><creatorcontrib>Olivas-Martinez, Miguel</creatorcontrib><creatorcontrib>Ibarra-Espinoza, José Alberto</creatorcontrib><creatorcontrib>Rodríguez-Córdova, Rosalva Josefina</creatorcontrib><creatorcontrib>Hernández-Giottonini, Karol Yesenia</creatorcontrib><creatorcontrib>Fernández-Quiroz, Daniel</creatorcontrib><creatorcontrib>Zavala-Rivera, Paul</creatorcontrib><creatorcontrib>Lucero-Acuña, Armando</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peñuñuri-Miranda, Omar</au><au>Olivas-Martinez, Miguel</au><au>Ibarra-Espinoza, José Alberto</au><au>Rodríguez-Córdova, Rosalva Josefina</au><au>Hernández-Giottonini, Karol Yesenia</au><au>Fernández-Quiroz, Daniel</au><au>Zavala-Rivera, Paul</au><au>Lucero-Acuña, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</atitle><jtitle>Polymers</jtitle><date>2022-08-02</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>3151</spage><pages>3151-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35956664</pmid><doi>10.3390/polym14153151</doi><orcidid>https://orcid.org/0000-0001-5669-4011</orcidid><orcidid>https://orcid.org/0000-0002-3927-0556</orcidid><orcidid>https://orcid.org/0000-0002-2390-2344</orcidid><orcidid>https://orcid.org/0000-0002-2331-9351</orcidid><orcidid>https://orcid.org/0000-0001-6464-2246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-08, Vol.14 (15), p.3151 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371108 |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Cancer therapies Chemical synthesis Conduction heating Conductive heat transfer Diameters Efficiency Experiments Heat generation Heat transfer Heat transfer coefficients Irradiation Laser beam heating Lasers Nanoparticles Polymerization Polymers Polypyrroles Polyvinyl alcohol Temperature Temperature distribution Temperature profiles Three dimensional analysis Water absorption Zeta potential |
title | Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Temperature%20Distribution%20of%20NIR%20Irradiated%20Polypyrrole%20Nanoparticles%20and%20Effects%20of%20pH&rft.jtitle=Polymers&rft.au=Pe%C3%B1u%C3%B1uri-Miranda,%20Omar&rft.date=2022-08-02&rft.volume=14&rft.issue=15&rft.spage=3151&rft.pages=3151-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14153151&rft_dat=%3Cproquest_pubme%3E2702180806%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700757053&rft_id=info:pmid/35956664&rfr_iscdi=true |