Loading…

Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH

The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-08, Vol.14 (15), p.3151
Main Authors: Peñuñuri-Miranda, Omar, Olivas-Martinez, Miguel, Ibarra-Espinoza, José Alberto, Rodríguez-Córdova, Rosalva Josefina, Hernández-Giottonini, Karol Yesenia, Fernández-Quiroz, Daniel, Zavala-Rivera, Paul, Lucero-Acuña, Armando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3
container_end_page
container_issue 15
container_start_page 3151
container_title Polymers
container_volume 14
creator Peñuñuri-Miranda, Omar
Olivas-Martinez, Miguel
Ibarra-Espinoza, José Alberto
Rodríguez-Córdova, Rosalva Josefina
Hernández-Giottonini, Karol Yesenia
Fernández-Quiroz, Daniel
Zavala-Rivera, Paul
Lucero-Acuña, Armando
description The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.
doi_str_mv 10.3390/polym14153151
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702180806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3</originalsourceid><addsrcrecordid>eNpdkcFv1TAMxiMEYtPYkXskLlwKTtMm7QUJjbE9aRrTGOfITR3I1DYlSZHef788bUIMX_xJ_vmzLTP2VsAHKXv4uIZpP4tGtFK04gU7rkHLqpEKXv6jj9hpSvdQommVEvo1O5JtX6Rqjhl9XzH7kGleQ8SJ3xVBEfMWiX_xKUc_bKW-8OD49e6W72LE0WOmkd-U4es-xjARv8YlrBiztxMljsvIz50jm9Ohb718w145nBKdPuUT9uPr-d3ZZXX17WJ39vmqsrXucqXcgFIJ2RCOqnfCKteBE30Pqq9BdhYdYEcglSYr5NDXTtT1iK3TBKod5An79Oi7bsNMo6Ull6PMGv2McW8CevO8svhf5mf4Y3qphYCuGLx_Mojh90Ypm9knS9OEC4UtmVpDLTroQBX03X_ofdjiUs47UKBbDa0sVPVI2RhSiuT-LiPAHH5onv1QPgCpuI_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700757053</pqid></control><display><type>article</type><title>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Peñuñuri-Miranda, Omar ; Olivas-Martinez, Miguel ; Ibarra-Espinoza, José Alberto ; Rodríguez-Córdova, Rosalva Josefina ; Hernández-Giottonini, Karol Yesenia ; Fernández-Quiroz, Daniel ; Zavala-Rivera, Paul ; Lucero-Acuña, Armando</creator><creatorcontrib>Peñuñuri-Miranda, Omar ; Olivas-Martinez, Miguel ; Ibarra-Espinoza, José Alberto ; Rodríguez-Córdova, Rosalva Josefina ; Hernández-Giottonini, Karol Yesenia ; Fernández-Quiroz, Daniel ; Zavala-Rivera, Paul ; Lucero-Acuña, Armando</creatorcontrib><description>The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14153151</identifier><identifier>PMID: 35956664</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cancer therapies ; Chemical synthesis ; Conduction heating ; Conductive heat transfer ; Diameters ; Efficiency ; Experiments ; Heat generation ; Heat transfer ; Heat transfer coefficients ; Irradiation ; Laser beam heating ; Lasers ; Nanoparticles ; Polymerization ; Polymers ; Polypyrroles ; Polyvinyl alcohol ; Temperature ; Temperature distribution ; Temperature profiles ; Three dimensional analysis ; Water absorption ; Zeta potential</subject><ispartof>Polymers, 2022-08, Vol.14 (15), p.3151</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3</cites><orcidid>0000-0001-5669-4011 ; 0000-0002-3927-0556 ; 0000-0002-2390-2344 ; 0000-0002-2331-9351 ; 0000-0001-6464-2246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700757053/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700757053?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Peñuñuri-Miranda, Omar</creatorcontrib><creatorcontrib>Olivas-Martinez, Miguel</creatorcontrib><creatorcontrib>Ibarra-Espinoza, José Alberto</creatorcontrib><creatorcontrib>Rodríguez-Córdova, Rosalva Josefina</creatorcontrib><creatorcontrib>Hernández-Giottonini, Karol Yesenia</creatorcontrib><creatorcontrib>Fernández-Quiroz, Daniel</creatorcontrib><creatorcontrib>Zavala-Rivera, Paul</creatorcontrib><creatorcontrib>Lucero-Acuña, Armando</creatorcontrib><title>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</title><title>Polymers</title><description>The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.</description><subject>Cancer therapies</subject><subject>Chemical synthesis</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Diameters</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Irradiation</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Polyvinyl alcohol</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>Three dimensional analysis</subject><subject>Water absorption</subject><subject>Zeta potential</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkcFv1TAMxiMEYtPYkXskLlwKTtMm7QUJjbE9aRrTGOfITR3I1DYlSZHef788bUIMX_xJ_vmzLTP2VsAHKXv4uIZpP4tGtFK04gU7rkHLqpEKXv6jj9hpSvdQommVEvo1O5JtX6Rqjhl9XzH7kGleQ8SJ3xVBEfMWiX_xKUc_bKW-8OD49e6W72LE0WOmkd-U4es-xjARv8YlrBiztxMljsvIz50jm9Ohb718w145nBKdPuUT9uPr-d3ZZXX17WJ39vmqsrXucqXcgFIJ2RCOqnfCKteBE30Pqq9BdhYdYEcglSYr5NDXTtT1iK3TBKod5An79Oi7bsNMo6Ull6PMGv2McW8CevO8svhf5mf4Y3qphYCuGLx_Mojh90Ypm9knS9OEC4UtmVpDLTroQBX03X_ofdjiUs47UKBbDa0sVPVI2RhSiuT-LiPAHH5onv1QPgCpuI_S</recordid><startdate>20220802</startdate><enddate>20220802</enddate><creator>Peñuñuri-Miranda, Omar</creator><creator>Olivas-Martinez, Miguel</creator><creator>Ibarra-Espinoza, José Alberto</creator><creator>Rodríguez-Córdova, Rosalva Josefina</creator><creator>Hernández-Giottonini, Karol Yesenia</creator><creator>Fernández-Quiroz, Daniel</creator><creator>Zavala-Rivera, Paul</creator><creator>Lucero-Acuña, Armando</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5669-4011</orcidid><orcidid>https://orcid.org/0000-0002-3927-0556</orcidid><orcidid>https://orcid.org/0000-0002-2390-2344</orcidid><orcidid>https://orcid.org/0000-0002-2331-9351</orcidid><orcidid>https://orcid.org/0000-0001-6464-2246</orcidid></search><sort><creationdate>20220802</creationdate><title>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</title><author>Peñuñuri-Miranda, Omar ; Olivas-Martinez, Miguel ; Ibarra-Espinoza, José Alberto ; Rodríguez-Córdova, Rosalva Josefina ; Hernández-Giottonini, Karol Yesenia ; Fernández-Quiroz, Daniel ; Zavala-Rivera, Paul ; Lucero-Acuña, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer therapies</topic><topic>Chemical synthesis</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Diameters</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Irradiation</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Polyvinyl alcohol</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>Three dimensional analysis</topic><topic>Water absorption</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peñuñuri-Miranda, Omar</creatorcontrib><creatorcontrib>Olivas-Martinez, Miguel</creatorcontrib><creatorcontrib>Ibarra-Espinoza, José Alberto</creatorcontrib><creatorcontrib>Rodríguez-Córdova, Rosalva Josefina</creatorcontrib><creatorcontrib>Hernández-Giottonini, Karol Yesenia</creatorcontrib><creatorcontrib>Fernández-Quiroz, Daniel</creatorcontrib><creatorcontrib>Zavala-Rivera, Paul</creatorcontrib><creatorcontrib>Lucero-Acuña, Armando</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peñuñuri-Miranda, Omar</au><au>Olivas-Martinez, Miguel</au><au>Ibarra-Espinoza, José Alberto</au><au>Rodríguez-Córdova, Rosalva Josefina</au><au>Hernández-Giottonini, Karol Yesenia</au><au>Fernández-Quiroz, Daniel</au><au>Zavala-Rivera, Paul</au><au>Lucero-Acuña, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH</atitle><jtitle>Polymers</jtitle><date>2022-08-02</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>3151</spage><pages>3151-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 ± 2 nm, which is maintained in the pH range of 4.2–10; while the zeta potential is significantly affected, decreasing from 20 ± 2 mV to −5 ± 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (η) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and η with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35956664</pmid><doi>10.3390/polym14153151</doi><orcidid>https://orcid.org/0000-0001-5669-4011</orcidid><orcidid>https://orcid.org/0000-0002-3927-0556</orcidid><orcidid>https://orcid.org/0000-0002-2390-2344</orcidid><orcidid>https://orcid.org/0000-0002-2331-9351</orcidid><orcidid>https://orcid.org/0000-0001-6464-2246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-08, Vol.14 (15), p.3151
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371108
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Cancer therapies
Chemical synthesis
Conduction heating
Conductive heat transfer
Diameters
Efficiency
Experiments
Heat generation
Heat transfer
Heat transfer coefficients
Irradiation
Laser beam heating
Lasers
Nanoparticles
Polymerization
Polymers
Polypyrroles
Polyvinyl alcohol
Temperature
Temperature distribution
Temperature profiles
Three dimensional analysis
Water absorption
Zeta potential
title Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Temperature%20Distribution%20of%20NIR%20Irradiated%20Polypyrrole%20Nanoparticles%20and%20Effects%20of%20pH&rft.jtitle=Polymers&rft.au=Pe%C3%B1u%C3%B1uri-Miranda,%20Omar&rft.date=2022-08-02&rft.volume=14&rft.issue=15&rft.spage=3151&rft.pages=3151-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14153151&rft_dat=%3Cproquest_pubme%3E2702180806%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-6fba36134ead69f1c6f80f1990692038caf0a8e0367ec13b92f122da5f7e065b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700757053&rft_id=info:pmid/35956664&rfr_iscdi=true