Loading…
A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling
Radiative cooling and evaporative cooling with low carbon footprint are regarded as promising passive cooling strategies. However, the intrinsic limits of continuous water supply with complex systems for evaporative cooling, and restricted cooling power as well as the strict requirement of weather c...
Saved in:
Published in: | Science advances 2022-08, Vol.8 (32), p.eabq0411-eabq0411 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiative cooling and evaporative cooling with low carbon footprint are regarded as promising passive cooling strategies. However, the intrinsic limits of continuous water supply with complex systems for evaporative cooling, and restricted cooling power as well as the strict requirement of weather conditions for radiative cooling, hinder the scale of their practical applications. Here, we propose a tandem passive cooler composed of bilayer polymer that enables dual-functional passive cooling of radiation and evaporation. Specifically, the high reflectivity to sunlight and mid-infrared emissivity of this polymer film allows excellent radiative cooling performance, and its good atmospheric water harvesting property of underlayer ensures self-supply of water and high evaporative cooling power. Consequently, this tandem passive cooler overcomes the fundamental difficulties of radiative cooling and evaporative cooling and shows the applicability under various conditions of weather/climate. It is expected that this design can expand the practical application domain of passive cooling.
A tandem radiative/evaporative cooler is developed to realize weather-insensitive and high-performing daytime passive cooling. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abq0411 |