Loading…

Aloe-Emodin Suppresses Oxidative Stress and Inflammation via a PI3K-Dependent Mechanism in a Murine Model of Sepsis

Background. This study was designed to assess the impact of aloe-emodin (AE) on oxidative stress and inflammation in a murine model of LPS-induced sepsis. In addition, the mechanistic basis for anti-inflammatory and antioxidant activity was assessed. Methods. Male ICR mice received an intraperitonea...

Full description

Saved in:
Bibliographic Details
Published in:Evidence-based complementary and alternative medicine 2022-08, Vol.2022, p.1-7
Main Authors: Gao, Huijie, Ren, Yan, Liu, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. This study was designed to assess the impact of aloe-emodin (AE) on oxidative stress and inflammation in a murine model of LPS-induced sepsis. In addition, the mechanistic basis for anti-inflammatory and antioxidant activity was assessed. Methods. Male ICR mice received an intraperitoneal injection of LPS (10 mg/kg), and the preventive properties of AE (80 or 150 mg/kg) on these mice were assessed by monitoring spleen index, and levels of inflammatory and oxidative stress-related factors. Peripheral blood TNF-α and IL-6 levels were assessed via ELISA kits, while changes in hepatic SOD and GSH-Px levels were assessed using appropriate biochemical kits. Splenic PI3K, AKT, and mTOR levels were assessed via qPCR and western blotting. Results. Relative to animals in the LPS model group, those in the AE treatment groups exhibited reduced spleen index, decreased inflammatory cytokine levels, and improved SOD and GSH-Px activity in liver tissues. Splenic PI3K, Akt, and mTOR levels were also reduced in response to AE treatment. Conclusions. These findings indicated that AE can alleviate sepsis-related tissue damage, inflammation, and oxidative stress, at least in part by suppressing the PI3K/Akt/mTOR signaling pathway. These results offer a clinical basis for the use of AE to treat sepsis and associated diseases.
ISSN:1741-427X
1741-4288
DOI:10.1155/2022/9697887