Loading…
Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα
Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a...
Saved in:
Published in: | Journal of chemical information and modeling 2022-08, Vol.62 (16), p.3896-3909 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23 |
---|---|
cites | cdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23 |
container_end_page | 3909 |
container_issue | 16 |
container_start_page | 3896 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Ogrizek, Mitja Janežič, Matej Valjavec, Katja Perdih, Andrej |
description | Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics. |
doi_str_mv | 10.1021/acs.jcim.2c00303 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706468390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1ERUvhztESFw4kHf9Z7_qCFKWURGqBQ5AQF2vieImj3XWwd5HyWH0RnglvkyKBxGlGM7_5ZkYfIa8YTBlwdoU2TXfWt1NuAQSIJ-SCFVJPtIKvTx_zQqtz8jylXUaEVvwZOReFlhVIdkG-zbHH5tB7S--c3WLnU0tDTWerz3Rx2MTQHJJP1He037qxisnR69BirmRsMbTY0euPM7oK--BTaF0cieXy1_0LclZjk9zLU7wkX27er-aLye2nD8v57HaCQlX9hK-lZgqqqmCuQl5CbUVZM47MrlGVHGvJuJJlKRRuhFw7rSusFDJmpa4tF5fk3VF3P6xbt7Gu6yM2Zh99i_FgAnrzd6fzW_M9_DRaAjAossCbk0AMPwaXetP6ZF3TYOfCkEy-iUFZFDDuev0PugtD7PJ7I6WkqoSGTMGRsjGkFF395xgGZjTOZOPMaJw5GZdH3h5HHjqPmv_FfwOLapn6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706468390</pqid></control><display><type>article</type><title>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ogrizek, Mitja ; Janežič, Matej ; Valjavec, Katja ; Perdih, Andrej</creator><creatorcontrib>Ogrizek, Mitja ; Janežič, Matej ; Valjavec, Katja ; Perdih, Andrej</creatorcontrib><description>Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00303</identifier><identifier>PMID: 35948041</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Domains ; Hydrolysis ; Molecular motors ; Mutation ; Pharmaceutical Modeling ; Quantum mechanics ; Reaction mechanisms ; Substrates</subject><ispartof>Journal of chemical information and modeling, 2022-08, Vol.62 (16), p.3896-3909</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Aug 22, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</citedby><cites>FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</cites><orcidid>0000-0002-6645-9231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogrizek, Mitja</creatorcontrib><creatorcontrib>Janežič, Matej</creatorcontrib><creatorcontrib>Valjavec, Katja</creatorcontrib><creatorcontrib>Perdih, Andrej</creatorcontrib><title>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.</description><subject>Domains</subject><subject>Hydrolysis</subject><subject>Molecular motors</subject><subject>Mutation</subject><subject>Pharmaceutical Modeling</subject><subject>Quantum mechanics</subject><subject>Reaction mechanisms</subject><subject>Substrates</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi1ERUvhztESFw4kHf9Z7_qCFKWURGqBQ5AQF2vieImj3XWwd5HyWH0RnglvkyKBxGlGM7_5ZkYfIa8YTBlwdoU2TXfWt1NuAQSIJ-SCFVJPtIKvTx_zQqtz8jylXUaEVvwZOReFlhVIdkG-zbHH5tB7S--c3WLnU0tDTWerz3Rx2MTQHJJP1He037qxisnR69BirmRsMbTY0euPM7oK--BTaF0cieXy1_0LclZjk9zLU7wkX27er-aLye2nD8v57HaCQlX9hK-lZgqqqmCuQl5CbUVZM47MrlGVHGvJuJJlKRRuhFw7rSusFDJmpa4tF5fk3VF3P6xbt7Gu6yM2Zh99i_FgAnrzd6fzW_M9_DRaAjAossCbk0AMPwaXetP6ZF3TYOfCkEy-iUFZFDDuev0PugtD7PJ7I6WkqoSGTMGRsjGkFF395xgGZjTOZOPMaJw5GZdH3h5HHjqPmv_FfwOLapn6</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Ogrizek, Mitja</creator><creator>Janežič, Matej</creator><creator>Valjavec, Katja</creator><creator>Perdih, Andrej</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6645-9231</orcidid></search><sort><creationdate>20220822</creationdate><title>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</title><author>Ogrizek, Mitja ; Janežič, Matej ; Valjavec, Katja ; Perdih, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Domains</topic><topic>Hydrolysis</topic><topic>Molecular motors</topic><topic>Mutation</topic><topic>Pharmaceutical Modeling</topic><topic>Quantum mechanics</topic><topic>Reaction mechanisms</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogrizek, Mitja</creatorcontrib><creatorcontrib>Janežič, Matej</creatorcontrib><creatorcontrib>Valjavec, Katja</creatorcontrib><creatorcontrib>Perdih, Andrej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogrizek, Mitja</au><au>Janežič, Matej</au><au>Valjavec, Katja</au><au>Perdih, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-08-22</date><risdate>2022</risdate><volume>62</volume><issue>16</issue><spage>3896</spage><epage>3909</epage><pages>3896-3909</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>35948041</pmid><doi>10.1021/acs.jcim.2c00303</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6645-9231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-08, Vol.62 (16), p.3896-3909 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400105 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Domains Hydrolysis Molecular motors Mutation Pharmaceutical Modeling Quantum mechanics Reaction mechanisms Substrates |
title | Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Mechanism%20of%20ATP%20Hydrolysis%20in%20the%20ATPase%20Domain%20of%20Human%20DNA%20Topoisomerase%20II%CE%B1&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Ogrizek,%20Mitja&rft.date=2022-08-22&rft.volume=62&rft.issue=16&rft.spage=3896&rft.epage=3909&rft.pages=3896-3909&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00303&rft_dat=%3Cproquest_pubme%3E2706468390%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706468390&rft_id=info:pmid/35948041&rfr_iscdi=true |