Loading…

Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα

Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2022-08, Vol.62 (16), p.3896-3909
Main Authors: Ogrizek, Mitja, Janežič, Matej, Valjavec, Katja, Perdih, Andrej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23
cites cdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23
container_end_page 3909
container_issue 16
container_start_page 3896
container_title Journal of chemical information and modeling
container_volume 62
creator Ogrizek, Mitja
Janežič, Matej
Valjavec, Katja
Perdih, Andrej
description Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.
doi_str_mv 10.1021/acs.jcim.2c00303
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706468390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1ERUvhztESFw4kHf9Z7_qCFKWURGqBQ5AQF2vieImj3XWwd5HyWH0RnglvkyKBxGlGM7_5ZkYfIa8YTBlwdoU2TXfWt1NuAQSIJ-SCFVJPtIKvTx_zQqtz8jylXUaEVvwZOReFlhVIdkG-zbHH5tB7S--c3WLnU0tDTWerz3Rx2MTQHJJP1He037qxisnR69BirmRsMbTY0euPM7oK--BTaF0cieXy1_0LclZjk9zLU7wkX27er-aLye2nD8v57HaCQlX9hK-lZgqqqmCuQl5CbUVZM47MrlGVHGvJuJJlKRRuhFw7rSusFDJmpa4tF5fk3VF3P6xbt7Gu6yM2Zh99i_FgAnrzd6fzW_M9_DRaAjAossCbk0AMPwaXetP6ZF3TYOfCkEy-iUFZFDDuev0PugtD7PJ7I6WkqoSGTMGRsjGkFF395xgGZjTOZOPMaJw5GZdH3h5HHjqPmv_FfwOLapn6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706468390</pqid></control><display><type>article</type><title>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ogrizek, Mitja ; Janežič, Matej ; Valjavec, Katja ; Perdih, Andrej</creator><creatorcontrib>Ogrizek, Mitja ; Janežič, Matej ; Valjavec, Katja ; Perdih, Andrej</creatorcontrib><description>Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00303</identifier><identifier>PMID: 35948041</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Domains ; Hydrolysis ; Molecular motors ; Mutation ; Pharmaceutical Modeling ; Quantum mechanics ; Reaction mechanisms ; Substrates</subject><ispartof>Journal of chemical information and modeling, 2022-08, Vol.62 (16), p.3896-3909</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Aug 22, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</citedby><cites>FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</cites><orcidid>0000-0002-6645-9231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogrizek, Mitja</creatorcontrib><creatorcontrib>Janežič, Matej</creatorcontrib><creatorcontrib>Valjavec, Katja</creatorcontrib><creatorcontrib>Perdih, Andrej</creatorcontrib><title>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.</description><subject>Domains</subject><subject>Hydrolysis</subject><subject>Molecular motors</subject><subject>Mutation</subject><subject>Pharmaceutical Modeling</subject><subject>Quantum mechanics</subject><subject>Reaction mechanisms</subject><subject>Substrates</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9uEzEQxi1ERUvhztESFw4kHf9Z7_qCFKWURGqBQ5AQF2vieImj3XWwd5HyWH0RnglvkyKBxGlGM7_5ZkYfIa8YTBlwdoU2TXfWt1NuAQSIJ-SCFVJPtIKvTx_zQqtz8jylXUaEVvwZOReFlhVIdkG-zbHH5tB7S--c3WLnU0tDTWerz3Rx2MTQHJJP1He037qxisnR69BirmRsMbTY0euPM7oK--BTaF0cieXy1_0LclZjk9zLU7wkX27er-aLye2nD8v57HaCQlX9hK-lZgqqqmCuQl5CbUVZM47MrlGVHGvJuJJlKRRuhFw7rSusFDJmpa4tF5fk3VF3P6xbt7Gu6yM2Zh99i_FgAnrzd6fzW_M9_DRaAjAossCbk0AMPwaXetP6ZF3TYOfCkEy-iUFZFDDuev0PugtD7PJ7I6WkqoSGTMGRsjGkFF395xgGZjTOZOPMaJw5GZdH3h5HHjqPmv_FfwOLapn6</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Ogrizek, Mitja</creator><creator>Janežič, Matej</creator><creator>Valjavec, Katja</creator><creator>Perdih, Andrej</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6645-9231</orcidid></search><sort><creationdate>20220822</creationdate><title>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</title><author>Ogrizek, Mitja ; Janežič, Matej ; Valjavec, Katja ; Perdih, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Domains</topic><topic>Hydrolysis</topic><topic>Molecular motors</topic><topic>Mutation</topic><topic>Pharmaceutical Modeling</topic><topic>Quantum mechanics</topic><topic>Reaction mechanisms</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogrizek, Mitja</creatorcontrib><creatorcontrib>Janežič, Matej</creatorcontrib><creatorcontrib>Valjavec, Katja</creatorcontrib><creatorcontrib>Perdih, Andrej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogrizek, Mitja</au><au>Janežič, Matej</au><au>Valjavec, Katja</au><au>Perdih, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-08-22</date><risdate>2022</risdate><volume>62</volume><issue>16</issue><spage>3896</spage><epage>3909</epage><pages>3896-3909</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Human DNA topoisomerase IIα is a biological nanomachine that regulates the topological changes of the DNA molecule and is considered a prime target for anticancer drugs. Despite intensive research, many atomic details about its mechanism of action remain unknown. We investigated the ATPase domain, a segment of the human DNA topoisomerase IIα, using all-atom molecular simulations, multiscale quantum mechanics/molecular mechanics (QM/MM) calculations, and a point mutation study. The results suggested that the binding of ATP affects the overall dynamics of the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors the dissociative substrate-assisted reaction mechanism with the catalytic Glu87 serving to properly position and polarize the lytic water molecule. The point mutation study complemented our computational results, demonstrating that Lys378, part of the important QTK loop, acts as a stabilizing residue. The work aims to pave the way to a deeper understanding of these important molecular motors and to advance the development of new therapeutics.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>35948041</pmid><doi>10.1021/acs.jcim.2c00303</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6645-9231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2022-08, Vol.62 (16), p.3896-3909
issn 1549-9596
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400105
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Domains
Hydrolysis
Molecular motors
Mutation
Pharmaceutical Modeling
Quantum mechanics
Reaction mechanisms
Substrates
title Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Mechanism%20of%20ATP%20Hydrolysis%20in%20the%20ATPase%20Domain%20of%20Human%20DNA%20Topoisomerase%20II%CE%B1&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Ogrizek,%20Mitja&rft.date=2022-08-22&rft.volume=62&rft.issue=16&rft.spage=3896&rft.epage=3909&rft.pages=3896-3909&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00303&rft_dat=%3Cproquest_pubme%3E2706468390%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a368t-2b491608851e8a270fc37f12a1cba672af412647736ad34be998a86a11c49fc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706468390&rft_id=info:pmid/35948041&rfr_iscdi=true