Loading…
Total Synthesis of (+)‐Cochlearol B by an Approach Based on a Catellani Reaction and Visible‐Light‐Enabled [2+2] Cycloaddition
A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A su...
Saved in:
Published in: | Angewandte Chemie International Edition 2022-08, Vol.61 (31), p.e202201213-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A subsequent Catellani reaction incorporated the remaining carbon atoms featured in the skeleton of cochlearol B. An ensuing visible‐light‐mediated [2+2] photocycloaddition closed the cyclobutane and formed the central bicyclo[3.2.0]heptane core. Notably, careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions and [4+2] cycloadditions.
A 14‐step approach to (+)‐cochlearol B is reported. The strategy involves an organocatalytic Kabbe condensation, Catellani reaction, and visible‐light‐mediated [2+2] cycloaddition to rapidly access the core of this natural product. Careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions, and [4+2] cycloadditions. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202201213 |