Loading…
Radiomic Signature Based on Dynamic Contrast-Enhanced MRI for Evaluation of Axillary Lymph Node Metastasis in Breast Cancer
Background. To construct and validate a radiomic-based model for estimating axillary lymph node (ALN) metastasis in patients with breast cancer by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods. In this retrospective study, a radiomic-based model was established in a trainin...
Saved in:
Published in: | Computational and mathematical methods in medicine 2022-08, Vol.2022, p.1-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background. To construct and validate a radiomic-based model for estimating axillary lymph node (ALN) metastasis in patients with breast cancer by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods. In this retrospective study, a radiomic-based model was established in a training cohort of 236 patients with breast cancer. Radiomic features were extracted from breast DCE-MRI scans. A method named the least absolute shrinkage and selection operator (LASSO) was applied to select radiomic features based on highly reproducible features. A radiomic signature was built by a support vector machine (SVM). Multivariate logistic regression analysis was adopted to establish a clinical characteristic-based model. The performance of models was analysed through discrimination ability and clinical benefits. Results. The radiomic signature comprised 6 features related to ALN metastasis and showed significant differences between the patients with ALN metastasis and without ALN metastasis (P |
---|---|
ISSN: | 1748-670X 1748-6718 |
DOI: | 10.1155/2022/1507125 |