Loading…
Intergrader agreement of foveal cone topography measured using adaptive optics scanning light ophthalmoscopy
The foveal cone mosaic can be directly visualized using adaptive optics scanning light ophthalmoscopy (AOSLO). Previous studies in individuals with normal vision report wide variability in the topography of the foveal cone mosaic, especially the value of peak cone density (PCD). While these studies...
Saved in:
Published in: | Biomedical optics express 2022-08, Vol.13 (8), p.4445-4454 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The foveal cone mosaic can be directly visualized using adaptive optics scanning light ophthalmoscopy (AOSLO). Previous studies in individuals with normal vision report wide variability in the topography of the foveal cone mosaic, especially the value of peak cone density (PCD). While these studies often involve a human grader, there have been no studies examining intergrader reproducibility of foveal cone mosaic metrics. Here we re-analyzed published AOSLO foveal cone images from 44 individuals to assess the relationship between the cone density centroid (CDC) location and the location of PCD. Across 5 graders with variable experience, we found a measurement error of 11.7% in PCD estimates and higher intergrader reproducibility of CDC location compared to PCD location (p  |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.460821 |