Loading…

IL-Functionalized Mg3Al-LDH as New Efficient Adsorbent for Pd Recovery from Aqueous Solutions

Palladium is a noble metal of the platinum group metals (PGMs) with a high value and major industrial applications. Due to the scarce palladium resources, researchers’ attention is currently focused on Pd ions recovery from secondary sources. Regarding the recovery process from aqueous solutions, ma...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-08, Vol.23 (16), p.9107
Main Authors: Cocheci, Laura, Lupa, Lavinia, Tolea, Nick Samuel, Lazău, Radu, Pode, Rodica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Palladium is a noble metal of the platinum group metals (PGMs) with a high value and major industrial applications. Due to the scarce palladium resources, researchers’ attention is currently focused on Pd ions recovery from secondary sources. Regarding the recovery process from aqueous solutions, many methods were studied, amongst which adsorption process gained a special attention due to its clear advantages. Moreover, the efficiency and the selectivity of an adsorbent material can be further improved by functionalization of various solid supports. In this context, the present work aims at the synthesis and characterization of Mg3Al-LDH and its functionalization with ionic liquid (IL) (Methyltrialkylammonium chloride) to obtain adsorbent materials with high efficiency in Pd removal from aqueous solutions. The maximum adsorption capacity developed by Mg3Al-LDH is 142.9 mg Pd., and depending on the functionalization method used (sonication and co-synthesis, respectively) the maximum adsorption capacity increases considerably, qmax-Mg3Al IL-US = 227.3 mg/g and qmax-Mg3Al IL-COS = 277.8 mg/g.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23169107