Loading…

α3β4 Acetylcholine Nicotinic Receptors Are Components of the Secretory Machinery Clusters in Chromaffin Cells

The heteromeric assembly of α3 and β4 subunits of acetylcholine nicotinic receptors (nAChRs) seems to mediate the secretory response in bovine chromaffin cells. However, there is no information about the localization of these nAChRs in relationship with the secretory active zones in this cellular mo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-08, Vol.23 (16), p.9101
Main Authors: Villanueva, José, Criado, Manuel, Giménez-Molina, Yolanda, González-Vélez, Virginia, Gil, Amparo, Gutiérrez, Luis Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The heteromeric assembly of α3 and β4 subunits of acetylcholine nicotinic receptors (nAChRs) seems to mediate the secretory response in bovine chromaffin cells. However, there is no information about the localization of these nAChRs in relationship with the secretory active zones in this cellular model. The present work presents the first evidence that, in fact, a population of these receptors is associated through the F-actin cytoskeleton with exocytotic machinery components, as detected by SNAP-25 labeling. Furthermore, we also prove that, upon stimulation, the probability to find α3β4 nAChRs very close to exocytotic events increases with randomized distributions, thus substantiating the clear dynamic behavior of these receptors during the secretory process. Modeling on secretory dynamics and secretory component distributions supports the idea that α3β4 nAChR cluster mobility could help with improving the efficiency of the secretory response of chromaffin cells. Our study is limited by the use of conventional confocal microscopy; in this sense, a strengthening to our conclusions could come from the use of super-resolution microscopy techniques in the near future.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23169101