Loading…

MoS2 and CdMoS4 nanostructure-based UV light photodetectors

We have developed MoS2 nanosheets and CdMoS4 hierarchical nanostructures based on a UV light photodetector. The surface morphologies of the as-prepared samples were investigated via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The performance parame...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale advances 2021-08, Vol.3 (16), p.4799-4803
Main Authors: Pawar, Mahendra S, Kadam, Sunil R, Kale, Bharat B, Late, Dattatray J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have developed MoS2 nanosheets and CdMoS4 hierarchical nanostructures based on a UV light photodetector. The surface morphologies of the as-prepared samples were investigated via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The performance parameters for the present photodetectors are investigated under the illumination of UV light having a wavelength of ∼385 nm. Upon the illumination of UV light, the CdMoS4-based photodetector device showed a better response to UV light compared to the MoS2 device in terms of photoresponsivity, response time (∼72 s) and recovery time (∼94 s). Our results reveal that CdMoS4 hierarchical nanostructures are practical for enhancing the device performance.We have developed MoS2 nanosheets and CdMoS4 hierarchical nanostructures based on a UV light photodetector. The surface morphologies of the as-prepared samples were investigated via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The performance parameters for the present photodetectors are investigated under the illumination of UV light having a wavelength of ∼385 nm. Upon the illumination of UV light, the CdMoS4-based photodetector device showed a better response to UV light compared to the MoS2 device in terms of photoresponsivity, response time (∼72 s) and recovery time (∼94 s). Our results reveal that CdMoS4 hierarchical nanostructures are practical for enhancing the device performance.
ISSN:2516-0230
2516-0230
DOI:10.1039/d1na00326g