Loading…
Role of Transmembrane Water Exchange in Glioma Invasion/Migration: In Vivo Preclinical Study by Relaxometry at Very Low Magnetic Field
This work shows that the longitudinal relaxation differences observed at very low magnetic fields between invasion/migration and proliferation processes on glioma mouse models in vivo are related to differences in the transmembrane water exchange basically linked to the aquaporin expression changes....
Saved in:
Published in: | Cancers 2022-08, Vol.14 (17), p.4180 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3 |
container_end_page | |
container_issue | 17 |
container_start_page | 4180 |
container_title | Cancers |
container_volume | 14 |
creator | Ruggiero, Maria Rosaria Ait Itto, Hamza Baroni, Simona Pierre, Sandra Boutonnat, Jean Broche, Lionel M Aime, Silvio Berger, François Geninatti Crich, Simonetta Lahrech, Hana |
description | This work shows that the longitudinal relaxation differences observed at very low magnetic fields between invasion/migration and proliferation processes on glioma mouse models in vivo are related to differences in the transmembrane water exchange basically linked to the aquaporin expression changes. Three glioma mouse models were used: Glio6 and Glio96 as invasion/migration models and U87 as cell proliferation model. In vivo proton longitudinal relaxation-rate constants (R1) at very low fields were measured by fast field cycling NMR (FFC-NMR). The tumor contribution to the observed proton relaxation rate, R1tum (U87: 12.26 ± 0.64 s−1; Glio6: 3.76 ± 0.88 s−1; Glio96: 6.90 ± 0.64 s−1 at 0.01 MHz), and the intracellular water lifetime, τin (U87: 826 ± 19 ms; Glio6: 516 ± 8 ms; Glio96: 596 ± 15 ms), were found to be good diagnostic hallmarks to distinguish invasion/migration from proliferation (p < 0.01 and 0.001). Overexpression of AQP4 and AQP1 were assessed in invasion/migration models, highlighting the pathophysiological role of these two aquaporins in water exchange that, in turn, determine the lower values in the observed R1 relaxation rate constant in glioma invasion/migration. Overall, our findings demonstrate that τin and R1 (measured at very low fields) are relevant biomarkers, discriminating invasion/migration from proliferation in vivo. These results highlight the use of FFC-NMR and FFC-imaging to assess the efficiency of drugs that could modulate aquaporin functions. |
doi_str_mv | 10.3390/cancers14174180 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9454706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745271097</galeid><sourcerecordid>A745271097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3</originalsourceid><addsrcrecordid>eNptkk1P3DAQhqOqVUGUc2-VpV56WTb-SBz3UAkhoEiLWlFKj9bEmSxGjk3tZMv-gf5uvOKjgGofZjR-3tea0RTFe1ruca7KuQFvMCYqqBS0KV8V26yUbFbXSrx-km8VuyldlflwTmUt3xZbvC6llFRuF3_PgkMSenIewacBhzZHJL9gxEgOb8wl-CUS68mxs2EAcuJXkGzw81O7jDDm7HOukQu7CuR7ROOstwYc-TFO3Zq0a3KGDm7CgGNcExjJBea4CH_IKSw9jtaQI4uue1e86cEl3L2PO8XPo8Pzg6-zxbfjk4P9xcyIphlnrGoAuOiYocqABF5J2rWNaUG2AkTuCRhyapgQAlivcqY466RQnVJV1fOd4sud7_XUDtgZ9GMEp6-jHSCudQCrn794e6mXYaWVqIQs62zw6d4ght8TplEPNhl0Lk8tTEkzSVlT1YyKjH58gV6FKfrc3oairOJMyH_UEhxq6_uQ_zUbU70vRZXJUm2ovf9Q-XY4WBM89jbXnwnmdwITQ0oR-8ceaak326NfbE9WfHg6mkf-YVf4LepPwRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711253247</pqid></control><display><type>article</type><title>Role of Transmembrane Water Exchange in Glioma Invasion/Migration: In Vivo Preclinical Study by Relaxometry at Very Low Magnetic Field</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Ruggiero, Maria Rosaria ; Ait Itto, Hamza ; Baroni, Simona ; Pierre, Sandra ; Boutonnat, Jean ; Broche, Lionel M ; Aime, Silvio ; Berger, François ; Geninatti Crich, Simonetta ; Lahrech, Hana</creator><creatorcontrib>Ruggiero, Maria Rosaria ; Ait Itto, Hamza ; Baroni, Simona ; Pierre, Sandra ; Boutonnat, Jean ; Broche, Lionel M ; Aime, Silvio ; Berger, François ; Geninatti Crich, Simonetta ; Lahrech, Hana</creatorcontrib><description>This work shows that the longitudinal relaxation differences observed at very low magnetic fields between invasion/migration and proliferation processes on glioma mouse models in vivo are related to differences in the transmembrane water exchange basically linked to the aquaporin expression changes. Three glioma mouse models were used: Glio6 and Glio96 as invasion/migration models and U87 as cell proliferation model. In vivo proton longitudinal relaxation-rate constants (R1) at very low fields were measured by fast field cycling NMR (FFC-NMR). The tumor contribution to the observed proton relaxation rate, R1tum (U87: 12.26 ± 0.64 s−1; Glio6: 3.76 ± 0.88 s−1; Glio96: 6.90 ± 0.64 s−1 at 0.01 MHz), and the intracellular water lifetime, τin (U87: 826 ± 19 ms; Glio6: 516 ± 8 ms; Glio96: 596 ± 15 ms), were found to be good diagnostic hallmarks to distinguish invasion/migration from proliferation (p < 0.01 and 0.001). Overexpression of AQP4 and AQP1 were assessed in invasion/migration models, highlighting the pathophysiological role of these two aquaporins in water exchange that, in turn, determine the lower values in the observed R1 relaxation rate constant in glioma invasion/migration. Overall, our findings demonstrate that τin and R1 (measured at very low fields) are relevant biomarkers, discriminating invasion/migration from proliferation in vivo. These results highlight the use of FFC-NMR and FFC-imaging to assess the efficiency of drugs that could modulate aquaporin functions.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14174180</identifier><identifier>PMID: 36077717</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animal models ; Aquaporin 1 ; Aquaporin 4 ; Aquaporins ; Biomarkers ; Brain research ; Brain tumors ; Cancer ; Cell culture ; Cell proliferation ; Contrast agents ; Diagnosis ; Genotype & phenotype ; Glioma ; Gliomas ; Health aspects ; Hypotheses ; Intracellular ; Magnetic fields ; Magnetic resonance imaging ; Metabolism ; Methods ; NMR ; Nuclear magnetic resonance ; Physiology ; Water content ; Water exchange</subject><ispartof>Cancers, 2022-08, Vol.14 (17), p.4180</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3</citedby><cites>FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3</cites><orcidid>0000-0003-2998-5424 ; 0000-0003-3843-3410 ; 0000-0002-6942-8588 ; 0000-0002-8683-3083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2711253247/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2711253247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36077717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruggiero, Maria Rosaria</creatorcontrib><creatorcontrib>Ait Itto, Hamza</creatorcontrib><creatorcontrib>Baroni, Simona</creatorcontrib><creatorcontrib>Pierre, Sandra</creatorcontrib><creatorcontrib>Boutonnat, Jean</creatorcontrib><creatorcontrib>Broche, Lionel M</creatorcontrib><creatorcontrib>Aime, Silvio</creatorcontrib><creatorcontrib>Berger, François</creatorcontrib><creatorcontrib>Geninatti Crich, Simonetta</creatorcontrib><creatorcontrib>Lahrech, Hana</creatorcontrib><title>Role of Transmembrane Water Exchange in Glioma Invasion/Migration: In Vivo Preclinical Study by Relaxometry at Very Low Magnetic Field</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>This work shows that the longitudinal relaxation differences observed at very low magnetic fields between invasion/migration and proliferation processes on glioma mouse models in vivo are related to differences in the transmembrane water exchange basically linked to the aquaporin expression changes. Three glioma mouse models were used: Glio6 and Glio96 as invasion/migration models and U87 as cell proliferation model. In vivo proton longitudinal relaxation-rate constants (R1) at very low fields were measured by fast field cycling NMR (FFC-NMR). The tumor contribution to the observed proton relaxation rate, R1tum (U87: 12.26 ± 0.64 s−1; Glio6: 3.76 ± 0.88 s−1; Glio96: 6.90 ± 0.64 s−1 at 0.01 MHz), and the intracellular water lifetime, τin (U87: 826 ± 19 ms; Glio6: 516 ± 8 ms; Glio96: 596 ± 15 ms), were found to be good diagnostic hallmarks to distinguish invasion/migration from proliferation (p < 0.01 and 0.001). Overexpression of AQP4 and AQP1 were assessed in invasion/migration models, highlighting the pathophysiological role of these two aquaporins in water exchange that, in turn, determine the lower values in the observed R1 relaxation rate constant in glioma invasion/migration. Overall, our findings demonstrate that τin and R1 (measured at very low fields) are relevant biomarkers, discriminating invasion/migration from proliferation in vivo. These results highlight the use of FFC-NMR and FFC-imaging to assess the efficiency of drugs that could modulate aquaporin functions.</description><subject>Animal models</subject><subject>Aquaporin 1</subject><subject>Aquaporin 4</subject><subject>Aquaporins</subject><subject>Biomarkers</subject><subject>Brain research</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Contrast agents</subject><subject>Diagnosis</subject><subject>Genotype & phenotype</subject><subject>Glioma</subject><subject>Gliomas</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>Intracellular</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Metabolism</subject><subject>Methods</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physiology</subject><subject>Water content</subject><subject>Water exchange</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1P3DAQhqOqVUGUc2-VpV56WTb-SBz3UAkhoEiLWlFKj9bEmSxGjk3tZMv-gf5uvOKjgGofZjR-3tea0RTFe1ruca7KuQFvMCYqqBS0KV8V26yUbFbXSrx-km8VuyldlflwTmUt3xZbvC6llFRuF3_PgkMSenIewacBhzZHJL9gxEgOb8wl-CUS68mxs2EAcuJXkGzw81O7jDDm7HOukQu7CuR7ROOstwYc-TFO3Zq0a3KGDm7CgGNcExjJBea4CH_IKSw9jtaQI4uue1e86cEl3L2PO8XPo8Pzg6-zxbfjk4P9xcyIphlnrGoAuOiYocqABF5J2rWNaUG2AkTuCRhyapgQAlivcqY466RQnVJV1fOd4sud7_XUDtgZ9GMEp6-jHSCudQCrn794e6mXYaWVqIQs62zw6d4ght8TplEPNhl0Lk8tTEkzSVlT1YyKjH58gV6FKfrc3oairOJMyH_UEhxq6_uQ_zUbU70vRZXJUm2ovf9Q-XY4WBM89jbXnwnmdwITQ0oR-8ceaak326NfbE9WfHg6mkf-YVf4LepPwRM</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Ruggiero, Maria Rosaria</creator><creator>Ait Itto, Hamza</creator><creator>Baroni, Simona</creator><creator>Pierre, Sandra</creator><creator>Boutonnat, Jean</creator><creator>Broche, Lionel M</creator><creator>Aime, Silvio</creator><creator>Berger, François</creator><creator>Geninatti Crich, Simonetta</creator><creator>Lahrech, Hana</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2998-5424</orcidid><orcidid>https://orcid.org/0000-0003-3843-3410</orcidid><orcidid>https://orcid.org/0000-0002-6942-8588</orcidid><orcidid>https://orcid.org/0000-0002-8683-3083</orcidid></search><sort><creationdate>20220829</creationdate><title>Role of Transmembrane Water Exchange in Glioma Invasion/Migration: In Vivo Preclinical Study by Relaxometry at Very Low Magnetic Field</title><author>Ruggiero, Maria Rosaria ; Ait Itto, Hamza ; Baroni, Simona ; Pierre, Sandra ; Boutonnat, Jean ; Broche, Lionel M ; Aime, Silvio ; Berger, François ; Geninatti Crich, Simonetta ; Lahrech, Hana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal models</topic><topic>Aquaporin 1</topic><topic>Aquaporin 4</topic><topic>Aquaporins</topic><topic>Biomarkers</topic><topic>Brain research</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Contrast agents</topic><topic>Diagnosis</topic><topic>Genotype & phenotype</topic><topic>Glioma</topic><topic>Gliomas</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>Intracellular</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Metabolism</topic><topic>Methods</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physiology</topic><topic>Water content</topic><topic>Water exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruggiero, Maria Rosaria</creatorcontrib><creatorcontrib>Ait Itto, Hamza</creatorcontrib><creatorcontrib>Baroni, Simona</creatorcontrib><creatorcontrib>Pierre, Sandra</creatorcontrib><creatorcontrib>Boutonnat, Jean</creatorcontrib><creatorcontrib>Broche, Lionel M</creatorcontrib><creatorcontrib>Aime, Silvio</creatorcontrib><creatorcontrib>Berger, François</creatorcontrib><creatorcontrib>Geninatti Crich, Simonetta</creatorcontrib><creatorcontrib>Lahrech, Hana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruggiero, Maria Rosaria</au><au>Ait Itto, Hamza</au><au>Baroni, Simona</au><au>Pierre, Sandra</au><au>Boutonnat, Jean</au><au>Broche, Lionel M</au><au>Aime, Silvio</au><au>Berger, François</au><au>Geninatti Crich, Simonetta</au><au>Lahrech, Hana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Transmembrane Water Exchange in Glioma Invasion/Migration: In Vivo Preclinical Study by Relaxometry at Very Low Magnetic Field</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-08-29</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>4180</spage><pages>4180-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>This work shows that the longitudinal relaxation differences observed at very low magnetic fields between invasion/migration and proliferation processes on glioma mouse models in vivo are related to differences in the transmembrane water exchange basically linked to the aquaporin expression changes. Three glioma mouse models were used: Glio6 and Glio96 as invasion/migration models and U87 as cell proliferation model. In vivo proton longitudinal relaxation-rate constants (R1) at very low fields were measured by fast field cycling NMR (FFC-NMR). The tumor contribution to the observed proton relaxation rate, R1tum (U87: 12.26 ± 0.64 s−1; Glio6: 3.76 ± 0.88 s−1; Glio96: 6.90 ± 0.64 s−1 at 0.01 MHz), and the intracellular water lifetime, τin (U87: 826 ± 19 ms; Glio6: 516 ± 8 ms; Glio96: 596 ± 15 ms), were found to be good diagnostic hallmarks to distinguish invasion/migration from proliferation (p < 0.01 and 0.001). Overexpression of AQP4 and AQP1 were assessed in invasion/migration models, highlighting the pathophysiological role of these two aquaporins in water exchange that, in turn, determine the lower values in the observed R1 relaxation rate constant in glioma invasion/migration. Overall, our findings demonstrate that τin and R1 (measured at very low fields) are relevant biomarkers, discriminating invasion/migration from proliferation in vivo. These results highlight the use of FFC-NMR and FFC-imaging to assess the efficiency of drugs that could modulate aquaporin functions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36077717</pmid><doi>10.3390/cancers14174180</doi><orcidid>https://orcid.org/0000-0003-2998-5424</orcidid><orcidid>https://orcid.org/0000-0003-3843-3410</orcidid><orcidid>https://orcid.org/0000-0002-6942-8588</orcidid><orcidid>https://orcid.org/0000-0002-8683-3083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-08, Vol.14 (17), p.4180 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9454706 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Animal models Aquaporin 1 Aquaporin 4 Aquaporins Biomarkers Brain research Brain tumors Cancer Cell culture Cell proliferation Contrast agents Diagnosis Genotype & phenotype Glioma Gliomas Health aspects Hypotheses Intracellular Magnetic fields Magnetic resonance imaging Metabolism Methods NMR Nuclear magnetic resonance Physiology Water content Water exchange |
title | Role of Transmembrane Water Exchange in Glioma Invasion/Migration: In Vivo Preclinical Study by Relaxometry at Very Low Magnetic Field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Transmembrane%20Water%20Exchange%20in%20Glioma%20Invasion/Migration:%20In%20Vivo%20Preclinical%20Study%20by%20Relaxometry%20at%20Very%20Low%20Magnetic%20Field&rft.jtitle=Cancers&rft.au=Ruggiero,%20Maria%20Rosaria&rft.date=2022-08-29&rft.volume=14&rft.issue=17&rft.spage=4180&rft.pages=4180-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14174180&rft_dat=%3Cgale_pubme%3EA745271097%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-258aa34d2c19ca7a3571db8cba7b4a4777a2e31c2444a2f91c2932d749d9955f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711253247&rft_id=info:pmid/36077717&rft_galeid=A745271097&rfr_iscdi=true |