Loading…
A critical evaluation of Mycobacterium bovis pangenomics, with reference to its utility in outbreak investigation
The increased accessibility of next generation sequencing has allowed enough genomes from a given bacterial species to be sequenced to describe the distribution of genes in the pangenome, without limiting analyses to genes present in reference strains. Although some taxa have thousands of whole geno...
Saved in:
Published in: | Microbial genomics 2022-06, Vol.8 (6) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increased accessibility of next generation sequencing has allowed enough genomes from a given bacterial species to be sequenced to describe the distribution of genes in the pangenome, without limiting analyses to genes present in reference strains. Although some taxa have thousands of whole genome sequences available on public databases, most genomes were sequenced with short read technology, resulting in incomplete assemblies. Studying pangenomes could lead to important insights into adaptation, pathogenicity, or molecular epidemiology, however given the known information loss inherent in analyzing contig-level assemblies, these inferences may be biased or inaccurate. In this study we describe the pangenome of a clonally evolving pathogen,
Mycobacterium bovis
, and examine the utility of gene content variation in
M. bovis
outbreak investigation. We constructed the
M. bovis
pangenome using 1463
de novo
assembled genomes. We tested the assumption of strict clonal evolution by studying evidence of recombination in core genes and analyzing the distribution of accessory genes among core monophyletic groups. To determine if gene content variation could be utilized in outbreak investigation, we carefully examined accessory genes detected in a well described
M. bovis
outbreak in Minnesota. We found significant errors in accessory gene classification. After accounting for these errors, we show that
M. bovis
has a much smaller accessory genome than previously described and provide evidence supporting ongoing clonal evolution and a closed pangenome, with little gene content variation generated over outbreaks. We also identified frameshift mutations in multiple genes, including a mutation in
glpK
, which has recently been associated with antibiotic tolerance in
Mycobacterium tuberculosis
. A pangenomic approach enables a more comprehensive analysis of genome dynamics than is possible with reference-based approaches; however, without critical evaluation of accessory gene content, inferences of transmission patterns employing these loci could be misguided. |
---|---|
ISSN: | 2057-5858 2057-5858 |
DOI: | 10.1099/mgen.0.000839 |