Loading…
Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine
Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomater...
Saved in:
Published in: | Polymers 2022-08, Vol.14 (17), p.3544 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3 |
container_end_page | |
container_issue | 17 |
container_start_page | 3544 |
container_title | Polymers |
container_volume | 14 |
creator | Babeanu, Narcisa Radu, Nicoleta Enascuta, Cristina-Emanuela Alexandrescu, Elvira Ganciarov, Mihaela Mohammed, Mohammed Shaymaa Omar Suica-Bunghez, Ioana Raluca Senin, Raluca Ursu, Magdalina Bostan, Marinela |
description | Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL. |
doi_str_mv | 10.3390/polym14173544 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746438498</galeid><sourcerecordid>A746438498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</originalsourceid><addsrcrecordid>eNptks9vFSEQx4nR2Kb26J3Ei5etsLCwXEyeL_VHUlNj9ExYdvY9ml1YYV9NjX-8s2mjPiMcIF8-82UGhpDnnF0IYdirOY13E5dci0bKR-S0ZlpUUij2-K_9CTkv5YbhkI1SXD8lJ6i2THFzSn5ed4sLMcQddbGn273Lzi-Qw49V2qZpTiUsQN-ENLlVd2OhaaCbGCY30s9Q0iF7KPR7WPb0U1ogLsjQzTyPwbslpFhoiAjuIEJG4RboR-iDDxGekScD-sH5w3pGvr69_LJ9X11dv_uw3VxVXjZmqVRX90p7o9pGmtoPrdC9xHI6zjSXYCRrBt01nHdty5Vwpu0197VuvWg6pXtxRl7f-86HboLeY47ZjXbOWEO-s8kFe3wSw97u0q01UjHVGDR4-WCQ07cDlMVOoXgYRxchHYqtNa8xuZpJRF_8g97gC0Usb6W4xK-q2R9q50awIQ4J7_Wrqd1oqaRopWmRuvgPhbOHKfgUYQioHwVU9wE-p1IyDL9r5MyuHWOPOkb8Av5gssg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711473520</pqid></control><display><type>article</type><title>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Babeanu, Narcisa ; Radu, Nicoleta ; Enascuta, Cristina-Emanuela ; Alexandrescu, Elvira ; Ganciarov, Mihaela ; Mohammed, Mohammed Shaymaa Omar ; Suica-Bunghez, Ioana Raluca ; Senin, Raluca ; Ursu, Magdalina ; Bostan, Marinela</creator><creatorcontrib>Babeanu, Narcisa ; Radu, Nicoleta ; Enascuta, Cristina-Emanuela ; Alexandrescu, Elvira ; Ganciarov, Mihaela ; Mohammed, Mohammed Shaymaa Omar ; Suica-Bunghez, Ioana Raluca ; Senin, Raluca ; Ursu, Magdalina ; Bostan, Marinela</creatorcontrib><description>Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14173544</identifier><identifier>PMID: 36080619</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; Antibiotics ; Anticancer properties ; Antimicrobial agents ; Bacteria ; Beef industry ; Biocompatibility ; Biological products ; Biomedical materials ; Biopolymers ; Cell division ; Cells ; Cellulose ; Chitosan ; Collagen ; Composite materials ; Crustaceans ; E coli ; Exoskeletons ; Fungicides ; Gram-positive bacteria ; Hydrogels ; Hydrogen ; Hydrogen bonds ; Hydroxyapatite ; Microorganisms ; Molecular weight ; Nanoparticles ; Nonsteroidal anti-inflammatory drugs ; Peptides ; Raw materials ; Regenerative medicine ; Technology application ; Thin films ; Toxicity</subject><ispartof>Polymers, 2022-08, Vol.14 (17), p.3544</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</citedby><cites>FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</cites><orcidid>0000-0002-6234-3012 ; 0000-0003-3050-6486 ; 0000-0002-1106-0258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2711473520/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2711473520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Babeanu, Narcisa</creatorcontrib><creatorcontrib>Radu, Nicoleta</creatorcontrib><creatorcontrib>Enascuta, Cristina-Emanuela</creatorcontrib><creatorcontrib>Alexandrescu, Elvira</creatorcontrib><creatorcontrib>Ganciarov, Mihaela</creatorcontrib><creatorcontrib>Mohammed, Mohammed Shaymaa Omar</creatorcontrib><creatorcontrib>Suica-Bunghez, Ioana Raluca</creatorcontrib><creatorcontrib>Senin, Raluca</creatorcontrib><creatorcontrib>Ursu, Magdalina</creatorcontrib><creatorcontrib>Bostan, Marinela</creatorcontrib><title>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</title><title>Polymers</title><description>Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.</description><subject>Amino acids</subject><subject>Antibiotics</subject><subject>Anticancer properties</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Beef industry</subject><subject>Biocompatibility</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cell division</subject><subject>Cells</subject><subject>Cellulose</subject><subject>Chitosan</subject><subject>Collagen</subject><subject>Composite materials</subject><subject>Crustaceans</subject><subject>E coli</subject><subject>Exoskeletons</subject><subject>Fungicides</subject><subject>Gram-positive bacteria</subject><subject>Hydrogels</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Hydroxyapatite</subject><subject>Microorganisms</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Peptides</subject><subject>Raw materials</subject><subject>Regenerative medicine</subject><subject>Technology application</subject><subject>Thin films</subject><subject>Toxicity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks9vFSEQx4nR2Kb26J3Ei5etsLCwXEyeL_VHUlNj9ExYdvY9ml1YYV9NjX-8s2mjPiMcIF8-82UGhpDnnF0IYdirOY13E5dci0bKR-S0ZlpUUij2-K_9CTkv5YbhkI1SXD8lJ6i2THFzSn5ed4sLMcQddbGn273Lzi-Qw49V2qZpTiUsQN-ENLlVd2OhaaCbGCY30s9Q0iF7KPR7WPb0U1ogLsjQzTyPwbslpFhoiAjuIEJG4RboR-iDDxGekScD-sH5w3pGvr69_LJ9X11dv_uw3VxVXjZmqVRX90p7o9pGmtoPrdC9xHI6zjSXYCRrBt01nHdty5Vwpu0197VuvWg6pXtxRl7f-86HboLeY47ZjXbOWEO-s8kFe3wSw97u0q01UjHVGDR4-WCQ07cDlMVOoXgYRxchHYqtNa8xuZpJRF_8g97gC0Usb6W4xK-q2R9q50awIQ4J7_Wrqd1oqaRopWmRuvgPhbOHKfgUYQioHwVU9wE-p1IyDL9r5MyuHWOPOkb8Av5gssg</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Babeanu, Narcisa</creator><creator>Radu, Nicoleta</creator><creator>Enascuta, Cristina-Emanuela</creator><creator>Alexandrescu, Elvira</creator><creator>Ganciarov, Mihaela</creator><creator>Mohammed, Mohammed Shaymaa Omar</creator><creator>Suica-Bunghez, Ioana Raluca</creator><creator>Senin, Raluca</creator><creator>Ursu, Magdalina</creator><creator>Bostan, Marinela</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6234-3012</orcidid><orcidid>https://orcid.org/0000-0003-3050-6486</orcidid><orcidid>https://orcid.org/0000-0002-1106-0258</orcidid></search><sort><creationdate>20220829</creationdate><title>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</title><author>Babeanu, Narcisa ; Radu, Nicoleta ; Enascuta, Cristina-Emanuela ; Alexandrescu, Elvira ; Ganciarov, Mihaela ; Mohammed, Mohammed Shaymaa Omar ; Suica-Bunghez, Ioana Raluca ; Senin, Raluca ; Ursu, Magdalina ; Bostan, Marinela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Antibiotics</topic><topic>Anticancer properties</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Beef industry</topic><topic>Biocompatibility</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cell division</topic><topic>Cells</topic><topic>Cellulose</topic><topic>Chitosan</topic><topic>Collagen</topic><topic>Composite materials</topic><topic>Crustaceans</topic><topic>E coli</topic><topic>Exoskeletons</topic><topic>Fungicides</topic><topic>Gram-positive bacteria</topic><topic>Hydrogels</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Hydroxyapatite</topic><topic>Microorganisms</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Peptides</topic><topic>Raw materials</topic><topic>Regenerative medicine</topic><topic>Technology application</topic><topic>Thin films</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babeanu, Narcisa</creatorcontrib><creatorcontrib>Radu, Nicoleta</creatorcontrib><creatorcontrib>Enascuta, Cristina-Emanuela</creatorcontrib><creatorcontrib>Alexandrescu, Elvira</creatorcontrib><creatorcontrib>Ganciarov, Mihaela</creatorcontrib><creatorcontrib>Mohammed, Mohammed Shaymaa Omar</creatorcontrib><creatorcontrib>Suica-Bunghez, Ioana Raluca</creatorcontrib><creatorcontrib>Senin, Raluca</creatorcontrib><creatorcontrib>Ursu, Magdalina</creatorcontrib><creatorcontrib>Bostan, Marinela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babeanu, Narcisa</au><au>Radu, Nicoleta</au><au>Enascuta, Cristina-Emanuela</au><au>Alexandrescu, Elvira</au><au>Ganciarov, Mihaela</au><au>Mohammed, Mohammed Shaymaa Omar</au><au>Suica-Bunghez, Ioana Raluca</au><au>Senin, Raluca</au><au>Ursu, Magdalina</au><au>Bostan, Marinela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</atitle><jtitle>Polymers</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>3544</spage><pages>3544-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36080619</pmid><doi>10.3390/polym14173544</doi><orcidid>https://orcid.org/0000-0002-6234-3012</orcidid><orcidid>https://orcid.org/0000-0003-3050-6486</orcidid><orcidid>https://orcid.org/0000-0002-1106-0258</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-08, Vol.14 (17), p.3544 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460659 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amino acids Antibiotics Anticancer properties Antimicrobial agents Bacteria Beef industry Biocompatibility Biological products Biomedical materials Biopolymers Cell division Cells Cellulose Chitosan Collagen Composite materials Crustaceans E coli Exoskeletons Fungicides Gram-positive bacteria Hydrogels Hydrogen Hydrogen bonds Hydroxyapatite Microorganisms Molecular weight Nanoparticles Nonsteroidal anti-inflammatory drugs Peptides Raw materials Regenerative medicine Technology application Thin films Toxicity |
title | Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20and%20Characterizing%20Composite%20Biomaterials%20of%20Animal%20Resources%20with%20Potential%20Applications%20in%20Regenerative%20Medicine&rft.jtitle=Polymers&rft.au=Babeanu,%20Narcisa&rft.date=2022-08-29&rft.volume=14&rft.issue=17&rft.spage=3544&rft.pages=3544-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14173544&rft_dat=%3Cgale_pubme%3EA746438498%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711473520&rft_id=info:pmid/36080619&rft_galeid=A746438498&rfr_iscdi=true |