Loading…

Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine

Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomater...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-08, Vol.14 (17), p.3544
Main Authors: Babeanu, Narcisa, Radu, Nicoleta, Enascuta, Cristina-Emanuela, Alexandrescu, Elvira, Ganciarov, Mihaela, Mohammed, Mohammed Shaymaa Omar, Suica-Bunghez, Ioana Raluca, Senin, Raluca, Ursu, Magdalina, Bostan, Marinela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3
cites cdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3
container_end_page
container_issue 17
container_start_page 3544
container_title Polymers
container_volume 14
creator Babeanu, Narcisa
Radu, Nicoleta
Enascuta, Cristina-Emanuela
Alexandrescu, Elvira
Ganciarov, Mihaela
Mohammed, Mohammed Shaymaa Omar
Suica-Bunghez, Ioana Raluca
Senin, Raluca
Ursu, Magdalina
Bostan, Marinela
description Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.
doi_str_mv 10.3390/polym14173544
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746438498</galeid><sourcerecordid>A746438498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</originalsourceid><addsrcrecordid>eNptks9vFSEQx4nR2Kb26J3Ei5etsLCwXEyeL_VHUlNj9ExYdvY9ml1YYV9NjX-8s2mjPiMcIF8-82UGhpDnnF0IYdirOY13E5dci0bKR-S0ZlpUUij2-K_9CTkv5YbhkI1SXD8lJ6i2THFzSn5ed4sLMcQddbGn273Lzi-Qw49V2qZpTiUsQN-ENLlVd2OhaaCbGCY30s9Q0iF7KPR7WPb0U1ogLsjQzTyPwbslpFhoiAjuIEJG4RboR-iDDxGekScD-sH5w3pGvr69_LJ9X11dv_uw3VxVXjZmqVRX90p7o9pGmtoPrdC9xHI6zjSXYCRrBt01nHdty5Vwpu0197VuvWg6pXtxRl7f-86HboLeY47ZjXbOWEO-s8kFe3wSw97u0q01UjHVGDR4-WCQ07cDlMVOoXgYRxchHYqtNa8xuZpJRF_8g97gC0Usb6W4xK-q2R9q50awIQ4J7_Wrqd1oqaRopWmRuvgPhbOHKfgUYQioHwVU9wE-p1IyDL9r5MyuHWOPOkb8Av5gssg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711473520</pqid></control><display><type>article</type><title>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Babeanu, Narcisa ; Radu, Nicoleta ; Enascuta, Cristina-Emanuela ; Alexandrescu, Elvira ; Ganciarov, Mihaela ; Mohammed, Mohammed Shaymaa Omar ; Suica-Bunghez, Ioana Raluca ; Senin, Raluca ; Ursu, Magdalina ; Bostan, Marinela</creator><creatorcontrib>Babeanu, Narcisa ; Radu, Nicoleta ; Enascuta, Cristina-Emanuela ; Alexandrescu, Elvira ; Ganciarov, Mihaela ; Mohammed, Mohammed Shaymaa Omar ; Suica-Bunghez, Ioana Raluca ; Senin, Raluca ; Ursu, Magdalina ; Bostan, Marinela</creatorcontrib><description>Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14173544</identifier><identifier>PMID: 36080619</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; Antibiotics ; Anticancer properties ; Antimicrobial agents ; Bacteria ; Beef industry ; Biocompatibility ; Biological products ; Biomedical materials ; Biopolymers ; Cell division ; Cells ; Cellulose ; Chitosan ; Collagen ; Composite materials ; Crustaceans ; E coli ; Exoskeletons ; Fungicides ; Gram-positive bacteria ; Hydrogels ; Hydrogen ; Hydrogen bonds ; Hydroxyapatite ; Microorganisms ; Molecular weight ; Nanoparticles ; Nonsteroidal anti-inflammatory drugs ; Peptides ; Raw materials ; Regenerative medicine ; Technology application ; Thin films ; Toxicity</subject><ispartof>Polymers, 2022-08, Vol.14 (17), p.3544</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</citedby><cites>FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</cites><orcidid>0000-0002-6234-3012 ; 0000-0003-3050-6486 ; 0000-0002-1106-0258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2711473520/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2711473520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Babeanu, Narcisa</creatorcontrib><creatorcontrib>Radu, Nicoleta</creatorcontrib><creatorcontrib>Enascuta, Cristina-Emanuela</creatorcontrib><creatorcontrib>Alexandrescu, Elvira</creatorcontrib><creatorcontrib>Ganciarov, Mihaela</creatorcontrib><creatorcontrib>Mohammed, Mohammed Shaymaa Omar</creatorcontrib><creatorcontrib>Suica-Bunghez, Ioana Raluca</creatorcontrib><creatorcontrib>Senin, Raluca</creatorcontrib><creatorcontrib>Ursu, Magdalina</creatorcontrib><creatorcontrib>Bostan, Marinela</creatorcontrib><title>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</title><title>Polymers</title><description>Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.</description><subject>Amino acids</subject><subject>Antibiotics</subject><subject>Anticancer properties</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Beef industry</subject><subject>Biocompatibility</subject><subject>Biological products</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cell division</subject><subject>Cells</subject><subject>Cellulose</subject><subject>Chitosan</subject><subject>Collagen</subject><subject>Composite materials</subject><subject>Crustaceans</subject><subject>E coli</subject><subject>Exoskeletons</subject><subject>Fungicides</subject><subject>Gram-positive bacteria</subject><subject>Hydrogels</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Hydroxyapatite</subject><subject>Microorganisms</subject><subject>Molecular weight</subject><subject>Nanoparticles</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Peptides</subject><subject>Raw materials</subject><subject>Regenerative medicine</subject><subject>Technology application</subject><subject>Thin films</subject><subject>Toxicity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks9vFSEQx4nR2Kb26J3Ei5etsLCwXEyeL_VHUlNj9ExYdvY9ml1YYV9NjX-8s2mjPiMcIF8-82UGhpDnnF0IYdirOY13E5dci0bKR-S0ZlpUUij2-K_9CTkv5YbhkI1SXD8lJ6i2THFzSn5ed4sLMcQddbGn273Lzi-Qw49V2qZpTiUsQN-ENLlVd2OhaaCbGCY30s9Q0iF7KPR7WPb0U1ogLsjQzTyPwbslpFhoiAjuIEJG4RboR-iDDxGekScD-sH5w3pGvr69_LJ9X11dv_uw3VxVXjZmqVRX90p7o9pGmtoPrdC9xHI6zjSXYCRrBt01nHdty5Vwpu0197VuvWg6pXtxRl7f-86HboLeY47ZjXbOWEO-s8kFe3wSw97u0q01UjHVGDR4-WCQ07cDlMVOoXgYRxchHYqtNa8xuZpJRF_8g97gC0Usb6W4xK-q2R9q50awIQ4J7_Wrqd1oqaRopWmRuvgPhbOHKfgUYQioHwVU9wE-p1IyDL9r5MyuHWOPOkb8Av5gssg</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Babeanu, Narcisa</creator><creator>Radu, Nicoleta</creator><creator>Enascuta, Cristina-Emanuela</creator><creator>Alexandrescu, Elvira</creator><creator>Ganciarov, Mihaela</creator><creator>Mohammed, Mohammed Shaymaa Omar</creator><creator>Suica-Bunghez, Ioana Raluca</creator><creator>Senin, Raluca</creator><creator>Ursu, Magdalina</creator><creator>Bostan, Marinela</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6234-3012</orcidid><orcidid>https://orcid.org/0000-0003-3050-6486</orcidid><orcidid>https://orcid.org/0000-0002-1106-0258</orcidid></search><sort><creationdate>20220829</creationdate><title>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</title><author>Babeanu, Narcisa ; Radu, Nicoleta ; Enascuta, Cristina-Emanuela ; Alexandrescu, Elvira ; Ganciarov, Mihaela ; Mohammed, Mohammed Shaymaa Omar ; Suica-Bunghez, Ioana Raluca ; Senin, Raluca ; Ursu, Magdalina ; Bostan, Marinela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Antibiotics</topic><topic>Anticancer properties</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Beef industry</topic><topic>Biocompatibility</topic><topic>Biological products</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cell division</topic><topic>Cells</topic><topic>Cellulose</topic><topic>Chitosan</topic><topic>Collagen</topic><topic>Composite materials</topic><topic>Crustaceans</topic><topic>E coli</topic><topic>Exoskeletons</topic><topic>Fungicides</topic><topic>Gram-positive bacteria</topic><topic>Hydrogels</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Hydroxyapatite</topic><topic>Microorganisms</topic><topic>Molecular weight</topic><topic>Nanoparticles</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Peptides</topic><topic>Raw materials</topic><topic>Regenerative medicine</topic><topic>Technology application</topic><topic>Thin films</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babeanu, Narcisa</creatorcontrib><creatorcontrib>Radu, Nicoleta</creatorcontrib><creatorcontrib>Enascuta, Cristina-Emanuela</creatorcontrib><creatorcontrib>Alexandrescu, Elvira</creatorcontrib><creatorcontrib>Ganciarov, Mihaela</creatorcontrib><creatorcontrib>Mohammed, Mohammed Shaymaa Omar</creatorcontrib><creatorcontrib>Suica-Bunghez, Ioana Raluca</creatorcontrib><creatorcontrib>Senin, Raluca</creatorcontrib><creatorcontrib>Ursu, Magdalina</creatorcontrib><creatorcontrib>Bostan, Marinela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babeanu, Narcisa</au><au>Radu, Nicoleta</au><au>Enascuta, Cristina-Emanuela</au><au>Alexandrescu, Elvira</au><au>Ganciarov, Mihaela</au><au>Mohammed, Mohammed Shaymaa Omar</au><au>Suica-Bunghez, Ioana Raluca</au><au>Senin, Raluca</au><au>Ursu, Magdalina</au><au>Bostan, Marinela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine</atitle><jtitle>Polymers</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>3544</spage><pages>3544-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36080619</pmid><doi>10.3390/polym14173544</doi><orcidid>https://orcid.org/0000-0002-6234-3012</orcidid><orcidid>https://orcid.org/0000-0003-3050-6486</orcidid><orcidid>https://orcid.org/0000-0002-1106-0258</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-08, Vol.14 (17), p.3544
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460659
source Publicly Available Content Database; PubMed Central
subjects Amino acids
Antibiotics
Anticancer properties
Antimicrobial agents
Bacteria
Beef industry
Biocompatibility
Biological products
Biomedical materials
Biopolymers
Cell division
Cells
Cellulose
Chitosan
Collagen
Composite materials
Crustaceans
E coli
Exoskeletons
Fungicides
Gram-positive bacteria
Hydrogels
Hydrogen
Hydrogen bonds
Hydroxyapatite
Microorganisms
Molecular weight
Nanoparticles
Nonsteroidal anti-inflammatory drugs
Peptides
Raw materials
Regenerative medicine
Technology application
Thin films
Toxicity
title Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20and%20Characterizing%20Composite%20Biomaterials%20of%20Animal%20Resources%20with%20Potential%20Applications%20in%20Regenerative%20Medicine&rft.jtitle=Polymers&rft.au=Babeanu,%20Narcisa&rft.date=2022-08-29&rft.volume=14&rft.issue=17&rft.spage=3544&rft.pages=3544-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14173544&rft_dat=%3Cgale_pubme%3EA746438498%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-6b2d67c9685492cf837d4000b10714e9405f7b511b88163a98d71c278c35b67d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711473520&rft_id=info:pmid/36080619&rft_galeid=A746438498&rfr_iscdi=true