Loading…

Zero‐inflated count distributions for capture–mark–reencounter data

The estimation of demographic parameters is a key component of evolutionary demography and conservation biology. Capture–mark–recapture methods have served as a fundamental tool for estimating demographic parameters. The accurate estimation of demographic parameters in capture–mark–recapture studies...

Full description

Saved in:
Bibliographic Details
Published in:Ecology and evolution 2022-09, Vol.12 (9), p.e9274-n/a
Main Authors: Riecke, Thomas V., Gibson, Daniel, Sedinger, James S., Schaub, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3334-deff4a1bed4ed57f8211c9b4abe35567cfb92e748c4c6e1c585448e72506150a3
container_end_page n/a
container_issue 9
container_start_page e9274
container_title Ecology and evolution
container_volume 12
creator Riecke, Thomas V.
Gibson, Daniel
Sedinger, James S.
Schaub, Michael
description The estimation of demographic parameters is a key component of evolutionary demography and conservation biology. Capture–mark–recapture methods have served as a fundamental tool for estimating demographic parameters. The accurate estimation of demographic parameters in capture–mark–recapture studies depends on accurate modeling of the observation process. Classic capture–mark–recapture models typically model the observation process as a Bernoulli or categorical trial with detection probability conditional on a marked individual's availability for detection (e.g., alive, or alive and present in a study area). Alternatives to this approach are underused, but may have great utility in capture–recapture studies. In this paper, we explore a simple concept: in the same way that counts contain more information about abundance than simple detection/non‐detection data, the number of encounters of individuals during observation occasions contains more information about the observation process than detection/non‐detection data for individuals during the same occasion. Rather than using Bernoulli or categorical distributions to estimate detection probability, we demonstrate the application of zero‐inflated Poisson and gamma‐Poisson distributions. The use of count distributions allows for inference on availability for encounter, as well as a wide variety of parameterizations for heterogeneity in the observation process. We demonstrate that this approach can accurately recover demographic and observation parameters in the presence of individual heterogeneity in detection probability and discuss some potential future extensions of this method. In this paper we explore a simple concept: in the same way that counts provide more information about abundance than detection/non‐detection data, counts of the number of observations of uniquely marked individuals can provide more information about demographic parameters than detection/non‐detection data. Zero‐inflated parameterizations of capture–recapture models can decrease runtime, and improve the estimation of heterogeneity in detection probability among individuals.
doi_str_mv 10.1002/ece3.9274
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9463028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720427660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3334-deff4a1bed4ed57f8211c9b4abe35567cfb92e748c4c6e1c585448e72506150a3</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMoWtSFLyADbnRRm-sk3QhS6gUEN7pxEzKZMxqdTmoyo7jzEQTf0CcxtVqqYDYnkI-P_-RHaIfgQ4IxHYAFdjikkq-gHsVc9KUUanXpvoG2Y7zH6eSYcizX0QbLiZSEqh46v4HgP17fXFPVpoUys75r2qx0sQ2u6Frnm5hVPmTWTNsuwMfr-8SEhzQCQPMFQ8hK05ottFaZOsL299xE1yfjq9FZ_-Ly9Hx0fNG3jDHeL6GquCEFlBxKIStFCbHDgpsCmBC5tFUxpCC5stzmQKxQgnMFkgqcE4EN20RHc--0KyZQWmjaYGo9DS4Fe9HeOP37pXF3-tY_6SHPGaYqCfa_BcE_dhBbPXHRQl2bBnwXNZXp66jMc5zQvT_ove9Ck9ZLFFFKMEFEog7mlA0-xgDVIgzBetaRnnWkZx0ldnc5_YL8aSQBgznw7Gp4-d-kx6Mx-1J-AkLNnvo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718853515</pqid></control><display><type>article</type><title>Zero‐inflated count distributions for capture–mark–reencounter data</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Open Access</source><source>ProQuest - Publicly Available Content Database</source><creator>Riecke, Thomas V. ; Gibson, Daniel ; Sedinger, James S. ; Schaub, Michael</creator><creatorcontrib>Riecke, Thomas V. ; Gibson, Daniel ; Sedinger, James S. ; Schaub, Michael</creatorcontrib><description>The estimation of demographic parameters is a key component of evolutionary demography and conservation biology. Capture–mark–recapture methods have served as a fundamental tool for estimating demographic parameters. The accurate estimation of demographic parameters in capture–mark–recapture studies depends on accurate modeling of the observation process. Classic capture–mark–recapture models typically model the observation process as a Bernoulli or categorical trial with detection probability conditional on a marked individual's availability for detection (e.g., alive, or alive and present in a study area). Alternatives to this approach are underused, but may have great utility in capture–recapture studies. In this paper, we explore a simple concept: in the same way that counts contain more information about abundance than simple detection/non‐detection data, the number of encounters of individuals during observation occasions contains more information about the observation process than detection/non‐detection data for individuals during the same occasion. Rather than using Bernoulli or categorical distributions to estimate detection probability, we demonstrate the application of zero‐inflated Poisson and gamma‐Poisson distributions. The use of count distributions allows for inference on availability for encounter, as well as a wide variety of parameterizations for heterogeneity in the observation process. We demonstrate that this approach can accurately recover demographic and observation parameters in the presence of individual heterogeneity in detection probability and discuss some potential future extensions of this method. In this paper we explore a simple concept: in the same way that counts provide more information about abundance than detection/non‐detection data, counts of the number of observations of uniquely marked individuals can provide more information about demographic parameters than detection/non‐detection data. Zero‐inflated parameterizations of capture–recapture models can decrease runtime, and improve the estimation of heterogeneity in detection probability among individuals.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.9274</identifier><identifier>PMID: 36177128</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Applied Ecology ; Availability ; Bayesian ; Capture-recapture studies ; capture–mark–recapture ; Conservation biology ; Demographics ; Demography ; Emigration ; Estimates ; Estimation ; gamma‐Poisson ; Heterogeneity ; individual heterogeneity ; Information processing ; Life History Ecology ; mark‐resight ; Mathematical models ; Organisms ; Parameter estimation ; Parameters ; Poisson distribution ; Population Ecology ; Probability ; robust design ; Statistical analysis ; temporary emigration ; zero‐inflation</subject><ispartof>Ecology and evolution, 2022-09, Vol.12 (9), p.e9274-n/a</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Ecology and Evolution published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3334-deff4a1bed4ed57f8211c9b4abe35567cfb92e748c4c6e1c585448e72506150a3</cites><orcidid>0000-0003-1580-1479 ; 0000-0003-2745-0557 ; 0000-0001-7998-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2718853515/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2718853515?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36177128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riecke, Thomas V.</creatorcontrib><creatorcontrib>Gibson, Daniel</creatorcontrib><creatorcontrib>Sedinger, James S.</creatorcontrib><creatorcontrib>Schaub, Michael</creatorcontrib><title>Zero‐inflated count distributions for capture–mark–reencounter data</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>The estimation of demographic parameters is a key component of evolutionary demography and conservation biology. Capture–mark–recapture methods have served as a fundamental tool for estimating demographic parameters. The accurate estimation of demographic parameters in capture–mark–recapture studies depends on accurate modeling of the observation process. Classic capture–mark–recapture models typically model the observation process as a Bernoulli or categorical trial with detection probability conditional on a marked individual's availability for detection (e.g., alive, or alive and present in a study area). Alternatives to this approach are underused, but may have great utility in capture–recapture studies. In this paper, we explore a simple concept: in the same way that counts contain more information about abundance than simple detection/non‐detection data, the number of encounters of individuals during observation occasions contains more information about the observation process than detection/non‐detection data for individuals during the same occasion. Rather than using Bernoulli or categorical distributions to estimate detection probability, we demonstrate the application of zero‐inflated Poisson and gamma‐Poisson distributions. The use of count distributions allows for inference on availability for encounter, as well as a wide variety of parameterizations for heterogeneity in the observation process. We demonstrate that this approach can accurately recover demographic and observation parameters in the presence of individual heterogeneity in detection probability and discuss some potential future extensions of this method. In this paper we explore a simple concept: in the same way that counts provide more information about abundance than detection/non‐detection data, counts of the number of observations of uniquely marked individuals can provide more information about demographic parameters than detection/non‐detection data. Zero‐inflated parameterizations of capture–recapture models can decrease runtime, and improve the estimation of heterogeneity in detection probability among individuals.</description><subject>Applied Ecology</subject><subject>Availability</subject><subject>Bayesian</subject><subject>Capture-recapture studies</subject><subject>capture–mark–recapture</subject><subject>Conservation biology</subject><subject>Demographics</subject><subject>Demography</subject><subject>Emigration</subject><subject>Estimates</subject><subject>Estimation</subject><subject>gamma‐Poisson</subject><subject>Heterogeneity</subject><subject>individual heterogeneity</subject><subject>Information processing</subject><subject>Life History Ecology</subject><subject>mark‐resight</subject><subject>Mathematical models</subject><subject>Organisms</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Poisson distribution</subject><subject>Population Ecology</subject><subject>Probability</subject><subject>robust design</subject><subject>Statistical analysis</subject><subject>temporary emigration</subject><subject>zero‐inflation</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1kctKAzEUhoMoWtSFLyADbnRRm-sk3QhS6gUEN7pxEzKZMxqdTmoyo7jzEQTf0CcxtVqqYDYnkI-P_-RHaIfgQ4IxHYAFdjikkq-gHsVc9KUUanXpvoG2Y7zH6eSYcizX0QbLiZSEqh46v4HgP17fXFPVpoUys75r2qx0sQ2u6Frnm5hVPmTWTNsuwMfr-8SEhzQCQPMFQ8hK05ottFaZOsL299xE1yfjq9FZ_-Ly9Hx0fNG3jDHeL6GquCEFlBxKIStFCbHDgpsCmBC5tFUxpCC5stzmQKxQgnMFkgqcE4EN20RHc--0KyZQWmjaYGo9DS4Fe9HeOP37pXF3-tY_6SHPGaYqCfa_BcE_dhBbPXHRQl2bBnwXNZXp66jMc5zQvT_ove9Ck9ZLFFFKMEFEog7mlA0-xgDVIgzBetaRnnWkZx0ldnc5_YL8aSQBgznw7Gp4-d-kx6Mx-1J-AkLNnvo</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Riecke, Thomas V.</creator><creator>Gibson, Daniel</creator><creator>Sedinger, James S.</creator><creator>Schaub, Michael</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1580-1479</orcidid><orcidid>https://orcid.org/0000-0003-2745-0557</orcidid><orcidid>https://orcid.org/0000-0001-7998-5233</orcidid></search><sort><creationdate>202209</creationdate><title>Zero‐inflated count distributions for capture–mark–reencounter data</title><author>Riecke, Thomas V. ; Gibson, Daniel ; Sedinger, James S. ; Schaub, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3334-deff4a1bed4ed57f8211c9b4abe35567cfb92e748c4c6e1c585448e72506150a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Ecology</topic><topic>Availability</topic><topic>Bayesian</topic><topic>Capture-recapture studies</topic><topic>capture–mark–recapture</topic><topic>Conservation biology</topic><topic>Demographics</topic><topic>Demography</topic><topic>Emigration</topic><topic>Estimates</topic><topic>Estimation</topic><topic>gamma‐Poisson</topic><topic>Heterogeneity</topic><topic>individual heterogeneity</topic><topic>Information processing</topic><topic>Life History Ecology</topic><topic>mark‐resight</topic><topic>Mathematical models</topic><topic>Organisms</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Poisson distribution</topic><topic>Population Ecology</topic><topic>Probability</topic><topic>robust design</topic><topic>Statistical analysis</topic><topic>temporary emigration</topic><topic>zero‐inflation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riecke, Thomas V.</creatorcontrib><creatorcontrib>Gibson, Daniel</creatorcontrib><creatorcontrib>Sedinger, James S.</creatorcontrib><creatorcontrib>Schaub, Michael</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riecke, Thomas V.</au><au>Gibson, Daniel</au><au>Sedinger, James S.</au><au>Schaub, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero‐inflated count distributions for capture–mark–reencounter data</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2022-09</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>e9274</spage><epage>n/a</epage><pages>e9274-n/a</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>The estimation of demographic parameters is a key component of evolutionary demography and conservation biology. Capture–mark–recapture methods have served as a fundamental tool for estimating demographic parameters. The accurate estimation of demographic parameters in capture–mark–recapture studies depends on accurate modeling of the observation process. Classic capture–mark–recapture models typically model the observation process as a Bernoulli or categorical trial with detection probability conditional on a marked individual's availability for detection (e.g., alive, or alive and present in a study area). Alternatives to this approach are underused, but may have great utility in capture–recapture studies. In this paper, we explore a simple concept: in the same way that counts contain more information about abundance than simple detection/non‐detection data, the number of encounters of individuals during observation occasions contains more information about the observation process than detection/non‐detection data for individuals during the same occasion. Rather than using Bernoulli or categorical distributions to estimate detection probability, we demonstrate the application of zero‐inflated Poisson and gamma‐Poisson distributions. The use of count distributions allows for inference on availability for encounter, as well as a wide variety of parameterizations for heterogeneity in the observation process. We demonstrate that this approach can accurately recover demographic and observation parameters in the presence of individual heterogeneity in detection probability and discuss some potential future extensions of this method. In this paper we explore a simple concept: in the same way that counts provide more information about abundance than detection/non‐detection data, counts of the number of observations of uniquely marked individuals can provide more information about demographic parameters than detection/non‐detection data. Zero‐inflated parameterizations of capture–recapture models can decrease runtime, and improve the estimation of heterogeneity in detection probability among individuals.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36177128</pmid><doi>10.1002/ece3.9274</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1580-1479</orcidid><orcidid>https://orcid.org/0000-0003-2745-0557</orcidid><orcidid>https://orcid.org/0000-0001-7998-5233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-7758
ispartof Ecology and evolution, 2022-09, Vol.12 (9), p.e9274-n/a
issn 2045-7758
2045-7758
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9463028
source Open Access: PubMed Central; Wiley Online Library Open Access; ProQuest - Publicly Available Content Database
subjects Applied Ecology
Availability
Bayesian
Capture-recapture studies
capture–mark–recapture
Conservation biology
Demographics
Demography
Emigration
Estimates
Estimation
gamma‐Poisson
Heterogeneity
individual heterogeneity
Information processing
Life History Ecology
mark‐resight
Mathematical models
Organisms
Parameter estimation
Parameters
Poisson distribution
Population Ecology
Probability
robust design
Statistical analysis
temporary emigration
zero‐inflation
title Zero‐inflated count distributions for capture–mark–reencounter data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero%E2%80%90inflated%20count%20distributions%20for%20capture%E2%80%93mark%E2%80%93reencounter%20data&rft.jtitle=Ecology%20and%20evolution&rft.au=Riecke,%20Thomas%20V.&rft.date=2022-09&rft.volume=12&rft.issue=9&rft.spage=e9274&rft.epage=n/a&rft.pages=e9274-n/a&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.9274&rft_dat=%3Cproquest_pubme%3E2720427660%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3334-deff4a1bed4ed57f8211c9b4abe35567cfb92e748c4c6e1c585448e72506150a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718853515&rft_id=info:pmid/36177128&rfr_iscdi=true